Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070501    DOI: 10.1088/0256-307X/34/7/070501
A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases
Yi-Cong Yu, Xi-Wen Guan**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2University of Chinese Academy of Sciences, Beijing 100049
3Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
4Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
Download: PDF(776KB)   PDF(mobile)(829KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with $SU(w)$ symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents $z=2$ and correlation length exponent $\nu=1/2$. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large $SU(w)$ and non-$SU(w)$ symmetries in one dimension.
Received: 28 May 2017      Published: 06 June 2017
PACS:  05.30.Fk (Fermion systems and electron gas)  
  02.30.Ik (Integrable systems)  
  03.75.Ss (Degenerate Fermi gases)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.
Cite this article:   
Yi-Cong Yu, Xi-Wen Guan 2017 Chin. Phys. Lett. 34 070501
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yi-Cong Yu
Xi-Wen Guan
[1]Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[2]Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
[3]Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[4]Van Amerongen A H, Van Es J J P, Wicke P, Kheruntsyan K V and van Druten N J 2008 Phys. Rev. Lett. 100 090402
[5]Haller E, Gustavsson M, Mark M J, Danzl J G, Hart R, Pupillo G and Christo H 2009 Science 325 1224
[6]Yang B, Chen Y Y, Zheng Y G, Sun H, Dai H N, Guan X W, Yuan Z S and Pan J W 2016 arXiv:1611.00426
[7]Liao Y A, Rittner A S C, Paprotta T, Li W H, Partridge G B, Hulet R G, Baur S K and Mueller E J 2010 Nature 467 567
[8]Wenz A N, Zürn G, Murmann S, Brouzos I, Lompe T and Jochim S 2013 Science 342 457
[9]Pagano G, Mancini M, Cappellini G, Lombardi P, Schäfer F, Hu H, Liu X J, Catani J, Sias C, Inguscio M and Fallani L 2014 Nat. Phys. 10 198
[10]Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. 55 331
[11]Dukelsky J, Pittel S and Sierra G 2004 Rev. Mod. Phys. 76 643
[12]Essler F H L, Frahm H, Göhmann F, Klümper A and Korepin E 2005 The One-Dimensional Hubbard Model (Cambridge: Cambridge University Press )
[13]Takahashi M Thermodynamics of One-Dimensional Solvable Models 1999 (Cambridge, Cambridge University Press)
[14]Wang Y P, Yang W L, Cao J P and Shi K 2015 Off-Diagonal Bethe Ansatz for Exactly Solvable Models (Heidelberg: Springer-Verlag Berlin )
[15]Wang Y P 1999 Phys. Rev. B 60 9236
[16]Batchelor M T, Guan X W, Oelkers N and Tsuboi Z 2007 Adv. Phys. 56 465
[17]Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
[18]Guan X W, Batchelor M T and Lee C H 2013 Rev. Mod. Phys. 85 1633
[19]Yu Y C, Chen Y Y, Lin H Q, Roemer R A and Guan X W 2016 Phys. Rev. B 94 195129
[20]Wu C, Hu J P and Zhang S C 2003 Phys. Rev. Lett. 91 186402
[21]Cazalilla M A and Rey A M 2014 Rep. Prog. Phys. 77 124401
[22]Schlottmann P 1993 J. Phys.: Condens. Matter 5 5869
[23]Lee J Y, Guan X W and Batchelor M T 2011 J. Phys. A 44 165002
[24]Jiang Y Z, He P Guan X W 2016 J. Phys. A 49 174005
[25]He P, Yin X G, Guan X W, Batchelor M T and Wang Y P 2010 Phys. Rev. A 82 053633
[26]Oelkers N, Batchelor M T, Bortz M and Guan X W 2006 J. Phys. A 39 1073
[27]Yang C N 1967 Phys. Rev. Lett. 19 1312
[28]Gaudin M 1967 Phys. Lett. A 24 55
[29]Sutherland B 1968 Phys. Rev. Lett. 20 98
[30]Takahashi M 1970 Prog. Theor. Phys. 44 348
[31]Olshanii M 1998 Phys. Rev. Lett. 81 938
[32]Sommerfeld A 1928 Z. Phys. 47 1
[33]Wilson K G 1975 Rev. Mod. Phys. 47 773
[34]Heidelberg Y P 1998 Int. J. Mod. Phys. B 12 3465
[35]Guan X W, Yin X G, Foerster A Batchelor M T, Lee C H and Lin H Q 2013 Phys. Rev. Lett. 111 130401
[36]Guan X W Batchelor M T, Lee C and Zhou H Q 2008 Phys. Rev. Lett. 100 200401
[37]Kuhn C C N and Foerster A 2012 New J. Phys. 14 013008
[38]Guan X W and Ho T L 2011 Phys. Rev. A 84 023616
[39]He F, Jiang Y Z, Yu Y C, Lin H Q and Guan X W 2017 arXiv:1702.05903
[40]Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press )
[41]Giamarchi T 2004 Quantum Physics in One Dimension (Oxford: Oxford University Press)
[42]Gorshkov A V, Hermele M, Gurarie V, Xu C, Julienne P S, Ye J, Zolller P, Demler E, Lukin M D and Rey A M 2010 Nat. Phys. 6 289
[43]Cazalilla M A, Ho A F and Ueda M 2009 New J. Phys. 11 103033
Related articles from Frontiers Journals
[1] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 070501
[2] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 070501
[3] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 070501
[4] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 070501
[5] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams[J]. Chin. Phys. Lett., 2014, 31(09): 070501
[6] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams[J]. Chin. Phys. Lett., 2014, 31(07): 070501
[7] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 070501
[8] ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song, LI Shuai, SUN Ya-Jun, LIU Gui-Lin. Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field[J]. Chin. Phys. Lett., 2014, 31(03): 070501
[9] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 070501
[10] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 070501
[11] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 070501
[12] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 070501
[13] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 070501
[14] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 070501
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 070501
Full text