Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 069801    DOI: 10.1088/0256-307X/34/6/069801
Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology
D. Aberkane**, N. Mebarki, S. Benchikh
Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine 25000, Algeria
Cite this article:   
D. Aberkane, N. Mebarki, S. Benchikh 2017 Chin. Phys. Lett. 34 069801
Download: PDF(664KB)   PDF(mobile)(658KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cosmology from Union 2.1 SNe Ia data. Then, we probe the dynamical stability of this model in a universe filled with VMCG and baryonic fluid in LQC background. It is found that the model is very suitable with $(\chi^{2/d.o.f}=0.974)$ and gives a good prediction of the current values of the deceleration parameter $q_{0}=\in(-0.60,-0.57)$ and the effective state parameter $\omega_{\rm eff}\in(-0.76,-0.74)$ that is consistent with the recent observational data. The model can also predict the time crossing when $(\rho_{\rm DE}\approx\rho_{\rm matter})$ at $z=0.75$ and can solve the coincidence problem. In LQC background, the Big Bang singularity found in classical cosmology ceases to exist and is replaced by a bounce when the Hubble parameter vanishes at $\rho_{\rm tot}\approx \rho_{\rm c}$.
Received: 25 January 2017      Published: 23 May 2017
PACS:  98.80.-k (Cosmology)  
  95.36.+x (Dark energy)  
  98.80.Qc (Quantum cosmology)  
Fund: Supported by the Algerian Ministry of Education and Research and DGRSDT.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
D. Aberkane
N. Mebarki
S. Benchikh
[1]Riess A G et al 1998 Astron. J. 116 1009
[2]Perlmutter S J et al 1999 Astrophys. J. 517 565
[3]Riess A G et al 2004 Astron. J. 607 665
[4]Spergel D N et al 2007 Astrophys. J. Suppl. Ser. 170 377
[5]Bennett C L et al 2003 Astrophys. J. Suppl. Ser. 148 1
[6]Masi S et al 2002 Prog. Part. Nucl. Phys. 48 243
[7]Tegmark M et al 2004 Phys. Rev. D 69 103501
[8]Scranton R et al 2003 Phys. Rev. Lett. (submitted)
[9]Tsujikawa S 2010 Astrophys. Space Sci. Library 370 331
[10]Bamba K et al 2012 Astrophys. Space Sci. 342 155
[11]Copeland E J et al 2006 Int. J. Mod. Phys. D 15 1753
[12]Padmanabhan T 2005 Curr. Sci. 88 1507
[13]Debnath U et al 2004 Class. Quantum Grav. 21 5609
[14]Lu J B et al 2008 Phys. Lett. B 662 87
[15]Paul B C and Thakur P 2013 J. Cosmol. Astropart. Phys. 2013 052
[16]Lu J B et al 2015 J. High Energy Phys. 1502 071
[17]Chakraborty S et al 2012 Eur. Phys. J. C 72 2101
[18]Benaoum H B 2012 Adv. High Energy Phys. 2012 357802
[19]Singh N I and Devi S R 2011 Astrophys. Space Sci. 334 231
[20]Barrow J D 1986 Phys. Lett. B 180 335
[21]Padmanabhan T and Chitre S M 1987 Phys. Lett. A 120 433
[22]Pavon D et al 1991 Class. Quantum Grav. 8 347
[23]Maartens R et al 1995 Class. Quantum Grav. 12 1455
[24]Lima J A S et al 1996 Phys. Rev. D 53 4287
[25]Mohanthy G and Pradhan B D 1992 Int. J. Theor. Phys. 31 151
[26]Mohanty G and Pattanaik R R 1991 Int. J. Theor. Phys. 30 239
[27]Singh J K 2005 Nuovo Cimento 1208 1251
[28]Singh J K and Shreeram 1996 Astrophys. SpaceSci. 236 277
[29]Benchikh S et al 2016 Chin. Phys. Lett. 33 059501
[30]Suzuki et al 2012 Astrophys. J. 746 85
[31]Bojowald M 2005 Living Rev. Relativ. 8 11
[32]Bojowald M 2008 Living Rev. Relativ. 11 4
[33]Ashtekar A 2009 J. Phys.: Conf. Ser. 189 012003
[34]Singh P 2008 J. Phys.: Conf. Ser. 140 012005
[35]Thiemann T 2003 Lect. Notes Phys. 631 41
[36]Ashtekar A et al 2003 Adv. Theor. Math. Phys. 7 233
[37]Bojowald M 2002 Phys. Rev. Lett. 89 261301
[38]Bojowald M and Vandersloot K 2003 Phys. Rev. D 67 124023
[39]Tsujikawa S et al 2004 Class. Quantum Grav. 21 5767
[40]Bojowald M and Kagan M 2006 Phys. Rev. D 74 044033
[41]Gorgi M A 2016 Phys. Lett. B 760 769
[42]Sami M et al 2006 Phys. Rev. D 74 043514
[43]Bojowald M 2001 Class. Quantum Grav. 18 L109
[44]Bean R et al 2008 Phys. Rev. D 78 023009
[45]Ashtekar A 2009 Gen. Relativ. Gravitation 41 707
[46]Giostri R et al 2012 J. Cosmol. Astropart. Phys. 1203 027
[47]Vargas dos S M et al 2016 J. Cosmol. Astropart. Phys. 1602 066
[48]Plank Collaboration 2013 Astron. Astrophys. Manuscript 571 A16
[49]Conley A et al 2011 Astrophys. J. Supp. 192 1
[50]Sullivan M et al 2011 Astrophys. J. 737 102
[51]Farooq O and Ratra B 2013 Astrophys. J. Lett. 325 L7
Related articles from Frontiers Journals
[1] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 069801
[2] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 069801
[3] Jie An, Bao-Rong Chang, Li-Xin Xu. Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing[J]. Chin. Phys. Lett., 2016, 33(07): 069801
[4] He-Kun Li, Pu-Xun Wu, Hong-Wei Yu. Test of the Cosmic Transparency with the Baryon Acoustic Oscillation and Type Ia Supernova Data[J]. Chin. Phys. Lett., 2016, 33(05): 069801
[5] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 069801
[6] Khurshudyan M., Pasqua A., Sadeghi J., Farahani H.. Quintessence Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2015, 32(10): 069801
[7] ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei. Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test[J]. Chin. Phys. Lett., 2015, 32(5): 069801
[8] YANG Lei, YANG Wei-Qiang, XU Li-Xin. Constraining Equation of State of Dark Matter: Including Weak Gravitational Lensing[J]. Chin. Phys. Lett., 2015, 32(5): 069801
[9] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 069801
[10] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 069801
[11] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 069801
[12] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 069801
[13] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 069801
[14] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 069801
[15] YADAV Anil Kumar. Cosmological Constant Dominated Transit Universe from the Early Deceleration Phase to the Current Acceleration Phase in Bianchi-V Spacetime[J]. Chin. Phys. Lett., 2012, 29(6): 069801
Full text