Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 063702    DOI: 10.1088/0256-307X/34/6/063702
ATOMIC AND MOLECULAR PHYSICS |
Dick Effect in the Integrating Sphere Cold Atom Clock
Xiu-Mei Wang1,2, Yan-Ling Meng1, Ya-Ning Wang1,2, Jin-Yin Wan1, Ming-Yuan Yu1,2, Xin Wang1,2, Ling Xiao1, Tang Li1, Hua-Dong Cheng1**, Liang Liu1**
1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100039
Cite this article:   
Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang et al  2017 Chin. Phys. Lett. 34 063702
Download: PDF(1073KB)   PDF(mobile)(1075KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (ISCAC). To reduce the impact of the Dick effect, a 5 MHz local oscillator with ultra-low phase noise is selected and a new microwave synthesizer is built in-house. Consequently, the phase noise of microwave signal is optimized. The contribution of the Dick effect is reduced to $2.5\times 10^{-13}\tau ^{-1/2}$ ($\tau $ is the integrating time). The frequency stability of $4.6\times 10^{-13}\tau ^{-1/2}$ is achieved. The development of this optimization can promote the space applications of the compact ISCAC.
Received: 22 February 2017      Published: 23 May 2017
PACS:  37.10.De (Atom cooling methods)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.62.Fi (Laser spectroscopy)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11604353, and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/063702       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/063702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiu-Mei Wang
Yan-Ling Meng
Ya-Ning Wang
Jin-Yin Wan
Ming-Yuan Yu
Xin Wang
Ling Xiao
Tang Li
Hua-Dong Cheng
Liang Liu
[1]Godone A, Micalizio S and Levi F 2004 Phys. Rev. A 70 023409
[2]Esnault F X, Holleville D, Rossetto N, Guerandel S and Dimarcq N 2010 Phys. Rev. A 82 033436
[3]Dick G J 1987 19th Precise Time and Time Interval (PTTI) Appl. Planning Meeting (Redondo Beach California 1–3 December 1987) p 133
[4]Quessada A, Kovacich R P, Couttillot I, Clairon A, Santarelli G and Lemonde P 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S150
[5]Danet J M, Lours M, Guérandel S and Clercq E 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 567
[6]Szmuk R, Dugrain V, Mainrult W, Reichel J and Rosenbusch P 2015 Phys. Rev. A 92 012106
[7]Chen Y H, She L, Wang M, Yang Z H, Liu H and Li J M 2016 Chin. Phys. B 25 120601
[8]Liu P, Meng Y L, Wan J Y, Wang X M, Wang Y N, Xiao L, Cheng H D and Liu L 2015 Phys. Rev. A 92 062101
[9]Wang X C, Cheng H D, Xiao L, Zheng B C, Meng Y L and Liu L 2012 Acta Optic Sin. 10 080201 (in Chinese)
[10]Riehle F 2004 Frequency Standards Basics and Applications (London: Macmillan) p 58
[11]Liu P, Meng Y L, Wan J Y, Wang X M, Wang Y N, Xiao L, Cheng H D and Liu L 2016 8th Symposium on Frequency Standards and Metrology (Potsdam Germany 12–16 October 2016) 723 012007
[12]Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 063702
[2] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 063702
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 063702
[4] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 063702
[5] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 063702
[6] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 063702
[7] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 063702
[8] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 063702
[9] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 063702
[10] Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü, Liang Liu. Initial Tests of a Rubidium Space Cold Atom Clock[J]. Chin. Phys. Lett., 2016, 33(06): 063702
[11] YU Wei-Wei, YU Rong-Mei, CHENG Yong-Jun. Tune-Out Wavelengths for the Rb Atom[J]. Chin. Phys. Lett., 2015, 32(12): 063702
[12] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 063702
[13] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 063702
[14] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 063702
[15] ZHENG Ben-Chang, CHENG Hua-Dong, MENG Yan-Ling, XIAO Ling, WAN Jin-Yin, LIU Liang. Observation of Faraday Rotation in Cold Atoms in an Integrating Sphere[J]. Chin. Phys. Lett., 2014, 31(07): 063702
Viewed
Full text


Abstract