Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 057302    DOI: 10.1088/0256-307X/34/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice
Jin-Lian Lu1†, Wei Luo2,3†, Xue-Yang Li2, Sheng-Qi Yang2, Jue-Xian Cao1, Xin-Gao Gong2,3, Hong-Jun Xiang2,3**
1Department of Physics, Xiangtan University, Xiangtan 411105
2Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Download: PDF(1478KB)   PDF(mobile)(1468KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetals, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu$_{3}$PdN, Ca$_{3}$P$_{2}$) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A$_{3}$B$_{2}$ (A is a group-IIB cation and B is a group-VA anion) compounds (such as Hg$_{3}$As$_{2})$ with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-$s$ orbital and the anion As-$p_{z}$ orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg$_{3}$As$_{2}$ with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.
Received: 24 March 2017      Published: 29 April 2017
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.55.Ak (Metals, semimetals, and alloys)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374056, the Special Funds for Major State Basic Research under Grant No 2015CB921700, the Program for Professor of Special Appointment (Eastern Scholar), the Qing Nian Ba Jian Program, and the Fok Ying Tung Education Foundation.
TRENDMD:   
Cite this article:   
Jin-Lian Lu, Wei Luo, Xue-Yang Li et al  2017 Chin. Phys. Lett. 34 057302
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/057302       OR      http://cpl.iphy.ac.cn/Y2017/V34/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Lian Lu
Wei Luo
Xue-Yang Li
Sheng-Qi Yang
Jue-Xian Cao
Xin-Gao Gong
Hong-Jun Xiang
[1]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2]Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601
Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[3]Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[4]Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[5]Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[6]Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[7]Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[8]Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Richard J Ma P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[9]Xu N, Weng H M, Lv B Q, Matt C, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autès G, Yazyev O V, Fang Z, Dai X, Aeppli G, Qian T, Mesot J, Ding H and Shi M 2016 Nat. Commun. 7 11006
[10]Xu S Y, Belopolski I, Daniel S S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F C, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S and Hasan M Z 2015 Sci. Adv. 1 e1501092
[11]Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[12]Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[13]Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[14]Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[15]He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[16]Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan Z M 2014 Nat. Commun. 5 3786
[17]Pariari A, Dutta P and Mandal P 2015 Phys. Rev. B 91 155139
[18]Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[19]Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[20]Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[21]Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B 92 081201
[22]Mullen K, Uchoa B and Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403
[23]Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L and Zhang S 2015 Nano Lett. 15 6974
[24]Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[25]Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[26]Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W and Cava R J 2015 arXiv:1504.01731v1
[27]Chan Y-H, Chiu C K, Chou M Y and Schnyder A P 2015 arXiv:1510.02759v2
[28]Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Bansil A, Chou F, Lin H and Hasan M Z 2015 arXiv:1505.03069v1
[29]Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H and Hasan M Z 2016 Phys. Rev. B 93 121113(R)
[30]Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109
[31]Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[32]Palumbo Gand Meichanetzidis K 2015 Phys. Rev. B 92 235106
[33]Wang Z et al 2015 Nat. Commun. 6 8339
[34]Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[35]Heikkilä T T and Volovik G E 2015 arXiv:1504.05824v1
[36]Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 1
[37]Bonaccorso F et al 2010 Nat. Photon. 4 611
[38]Fu L 2011 Phys. Rev. Lett. 106 106802
[39]Liu C X et al 2010 Phys. Rev. B 82 045122
[40]Liu J et al 2013 Nat. Mater. 13 178
[41]Wrasse E O and Schmidt T M 2014 Nano Lett. 14 5717
[42]Liu J, Qian X and Fu L 2015 Nano Lett. 15 2657
[43]López Sancho M P et al 1985 J. Phys. F 15 851
[44]Liu J and Vanderbilt D 2014 Phys. Rev. B 90 155316
[45]Voon L C L Y and Willatzen M 2009 The $kp$ Method: Electronic Properties of Semiconductors (New York: Springer)
Related articles from Frontiers Journals
[1] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 057302
[2] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 057302
[3] Sailong Ju, Maokun Wu, Hao Yang, Naizhou Wang, Yingying Zhang, Peng Wu, Pengdong Wang, Bo Zhang, Kejun Mu, Yaoyi Li, Dandan Guan, Dong Qian, Feng Lu, Dayong Liu, Wei-Hua Wang, Xianhui Chen, Zhe Sun. Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 057302
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 057302
[5] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 057302
[6] Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue. Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide[J]. Chin. Phys. Lett., 2018, 35(2): 057302
[7] Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang, Xin-Cun Peng, Ji-Jun Zou, Bin Tang, Guo-Tong Du. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements[J]. Chin. Phys. Lett., 2017, 34(9): 057302
[8] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 057302
[9] Jing Shi, Yong Gao, Xiao-Li Wang, Si-Ning Yun. Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers[J]. Chin. Phys. Lett., 2017, 34(8): 057302
[10] Jian-Peng Sun. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$[J]. Chin. Phys. Lett., 2017, 34(7): 057302
[11] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 057302
[12] Yu-Feng An, Zhen-Hong Dai, Yin-Chang Zhao, Chao Lian, Zhao-Qing Liu. Band Gap Adjustment of SiC Honeycomb Structure through Hydrogenation and Fluorination[J]. Chin. Phys. Lett., 2017, 34(1): 057302
[13] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 057302
[14] Yong-Hong Gu, Qing Feng, Jian-Jun Chen, Yan-Hua Li, Cong-Zhong Cai. Adsorption Regularity and Characteristics of $sp^{3}$-Hybridized Gas Molecules on Anatase TiO$_{2}$ (101) Surface[J]. Chin. Phys. Lett., 2016, 33(07): 057302
[15] Zhen Yao, Jia-Yin Lv, Chun-Jian Liu, Hang Lv, Bing-Bing Liu. Preferable Orientations of Interacting C$_{60}$ Molecules inside Single Wall Boron Nitride Nanotubes[J]. Chin. Phys. Lett., 2016, 33(05): 057302
Viewed
Full text


Abstract