Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 057301    DOI: 10.1088/0256-307X/34/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric
Sheng-Kai Wang1,2, Lei Ma2,3, Hu-Dong Chang1,2, Bing Sun1,2, Yu-Yu Su2, Le Zhong4, Hai-Ou Li3, Zhi Jin2, Xin-Yu Liu2, Hong-Gang Liu1,2**
1Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
3Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004
4Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200
Cite this article:   
Sheng-Kai Wang, Lei Ma, Hu-Dong Chang et al  2017 Chin. Phys. Lett. 34 057301
Download: PDF(947KB)   PDF(mobile)(949KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Positive bias temperature instability stress induced interface trap density in a buried InGaAs channel metal-oxide-semiconductor field-effect transistor with a InGaP barrier layer and Al$_{2}$O$_{3}$ dielectric is investigated. Well behaved split $C$–$V$ characteristics with small capacitance frequency dispersion are confirmed after the insertion of the InGaP barrier layer. The direct-current $I_{\rm d}$–$V_{\rm g}$ measurements show both degradations of positive gate voltage shift and sub-threshold swing in the sub-threshold region, and degradation of positive $\Delta V_{\rm g}$ in the on-current region. The $I_{\rm d}$–$V_{\rm g}$ degradation during the positive bias temperature instability tests is mainly contributed by the generation of near interface acceptor traps under stress. Specifically, the stress induced acceptor traps contain both permanent and recoverable traps. Compared with surface channel InGaAs devices, stress induced recoverable donor traps are negligible in the buried channel ones.
Received: 30 November 2016      Published: 29 April 2017
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  71.55.Eq (III-V semiconductors)  
  77.55.D-  
Fund: Supported by the National Science and Technology Major Project of China under Grant No 2011ZX02708-003, the National Natural Science Foundation of China under Grant No 61504165, and the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/057301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/057301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Kai Wang
Lei Ma
Hu-Dong Chang
Bing Sun
Yu-Yu Su
Le Zhong
Hai-Ou Li
Zhi Jin
Xin-Yu Liu
Hong-Gang Liu
[1]Sonnet A M, Hinkle C L, Jivani M N, Chapman R A, Pollack G P, Wallace R M and Vogel E M 2008 Appl. Phys. Lett. 93 122109
[2]Wu Y Q, Wang W K, Koybasi O, Zakharov D N, Stach E A, Nakahara S, Hwang J C M and Ye P D 2009 IEEE Electron Device Lett. 30 700
[3]Zhang R, Huang P C, Taoka N, Takenaka M and Takagi S 2012 Symp. VLSI Technol. (Honolulu Hawaii 12–15 June 2012) p 161
[4]Bai Y, Bulsara M T and Fitzgerald E A 2012 J. Appl. Phys. 111 013502
[5]Egard M, Ohlsson L, Borg B M, Lenrick F, Wallenberg R, Wernersson L and Lind E 2011 Int. Electron. Device Meeting (Washington DC USA 5–7 December 2011) p 303
[6]Huang J, Goel N, Zhao H, Kang C Y, Min K S, Bersuker G, Oktyabrsky S, Gaspe C K, Santos M B, Majhi P, Kirsch P D, Tseng H H, Lee J C and Jammy R 2009 Int. Electron. Device Meeting (Baltimore Maryland 7–9 December 2009) p 335
[7]Franco J, Alian A, Kaczer B, Lin D, Ivanov T, Pourghaderi A, Martens K, Mols Y, Zhou D, Waldron N, Sioncke S, Kauerauf T, Collaert N, Thean A, Heyns M and Groeseneken G 2014 IEEE Int. Reliability Phys. Symp. (Waikoloa Hawaii 1–5 June 2014) p 567
[8]Li M F, Jiao G, Hu Y, Xuan Y, Huang D and Ye P D 2013 IEEE Trans. Dev. Mater. Reliab. 13 515
[9]Chang H D, Sun B, Xue B Q, Liu G M, Zhao W, Wang S K and Liu H G 2013 Chin. Phys. B 22 077306
[10]Xue F, Zhao H, Chen Y T, Wang Y, Zhou F and Lee J C 2011 Appl. Phys. Lett. 98 082106
[11]Wang S K, Cao M, Sun B, Li H and Liu H G 2015 Appl. Phys. Express 8 091201
[12]Varghese D, Xuan Y, Wu Y Q, Shen T, Ye P D and Alam M A 2008 Int. Electron. Device Meeting (San Francisco California 15–17 December 2008) p 379
Related articles from Frontiers Journals
[1] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 057301
[2] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 057301
[3] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 057301
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 057301
[5] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 057301
[6] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 057301
[7] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 057301
[8] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 057301
[9] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 057301
[10] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 057301
[11] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 057301
[12] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 057301
[13] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 057301
[14] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 057301
[15] SHEN Hua-Jun, TANG Ya-Chao, PENG Zhao-Yang, DENG Xiao-Chuan, BAI Yun, WANG Yi-Yu, LI Cheng-Zhan, LIU Ke-An, LIU Xin-Yu. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(12): 057301
Viewed
Full text


Abstract