Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 044201    DOI: 10.1088/0256-307X/34/4/044201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Microfluidic Channel Fabrication Process Utilizing Nd:YVO$_{4}$ Laser-Melting Technique
Ju-Nan Kuo**, Jian-Liang Wu
Department of Automation Engineering, National Formosa University, Yunlin 632
Cite this article:   
Ju-Nan Kuo, Jian-Liang Wu 2017 Chin. Phys. Lett. 34 044201
Download: PDF(702KB)   PDF(mobile)(698KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple and repeatable method is proposed for fabricating microfluidic channels on polydimethylsiloxane (PDMS) substrates. In the proposed approach, ridge structures with the required microchannel dimensions are formed on the surface of a borosilicate glass substrate by means of a laser-induced melting process. The patterned substrate is then used as a mold to transfer the microchannel structures to a PDMS layer. Finally, the PDMS layer is aligned with a glass cover plate and is sealed using an oxygen plasma treatment process. The proposed patterning technique is a maskless method, and is thus cheaper and more straightforward than conventional lithography techniques. Moreover, unlike direct laser ablation methods, the proposed method requires significantly less input energy, and therefore minimizes thermal effects such as substrate cracking and distortion. The feasibility of the proposed fabrication method is demonstrated by measuring the capillary filling speed of human blood plasma in microfluidic channels with cross-section sizes of $19.5\times2.5$, $17.0\times1.6$, and $7.6\times1.1$ μm$^{2}$ (width$\times$height), respectively, and temperatures of 4$^\circ\!$C, 25$^\circ\!$C and 37$^\circ\!$C. It is shown that the filling speed reduces with a reducing channel cross-section size, a lower operating temperature, and an increased filling length.
Received: 19 October 2016      Published: 21 March 2017
PACS:  42.62.-b (Laser applications)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.55.nb (Capillary and thermocapillary flows)  
Fund: Supported by the Ministry of Science and Technology of Taiwan of China under Grant No MOST 104-2221-E-150-056
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/044201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/044201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ju-Nan Kuo
Jian-Liang Wu
[1]Lai S Y, Wang S N, Luo J, Lee L J, Yang S T and Madou M J 2004 Anal Chem. 76 1832
[2]Tas N R, Haneveld J, Jansen H V, Elwenspoek M and van den Berg A 2004 Appl. Phys. Lett. 85 3274
[3]Eijkel J C T and van den Berg A 2006 Lab Chip 6 1405
[4]Bouaidat S, Hansen O, Bruus H, Berendsen C, BauMadsen N K, Thomsen P, Wolff A and Jonsmann J 2005 Lab Chip 5 827
[5]Zimmermann M, Schmid H, Hunziker P and Delamarche E 2007 Lab Chip 7 119
[6]Kuo J N, Liao H S and Li X M 2017 Microsys. Technol. 23 721
[7]Abgrall P and Gué A M 2007 J. Micromech. Microeng. 17 R15
[8]Haeberle S and Zengerle R 2007 Lab Chip 7 1094
[9]Reyes D R, Iossifidis D, Auroux P A and Manz A 2002 Anal. Chem. 74 2623
[10]Arora A, Simone G, SaliebBeugelaar G B, Kim J T and Manz A 2010 Anal. Chem. 82 4830
[11]Juncker D, Michel B, Hunziker P and Delamarche E 2004 Biosens Bioelectron 19 1193
[12]Chen X, Cui D F, Liu C C and Li H 2008 Sens. Actuators B 130 216
[13]Fan R, Karnik R, Yue M, Li D, Majumdar A and Yang P 2005 Nano Lett. 5 1633
[14]Sinha P M, Valco G, Sharma S, Liu X and Ferrari M 2004 Nanotechnology 15 S585
[15]Foquet M, Korlach J, Zipfel W, Webb W W and Craighead H G 2002 Anal. Chem. 74 1415
[16]Saleh O A and Sohn L L 2003 Nano Lett. 3 37
[17]Ke K, Jr Hasselbrink E F and Hunt A J 2005 Anal. Chem. 77 5083
[18]Lorenz R M, Kuyper C L, Allen P B, Lee L P and Chiu D T 2004 Langmuir 20 1833
[19]Jariwala S, Tan B and Venkatakrishnan K 2009 J. Micromech. Microeng. 19 115023
[20]Malinauskas M, Zukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R and Juodkazis S 2016 Light-Sci. Appl. 5 e16133
[21]Weisbuch F, Tokarev V N, Lazare S and Débarre D 2002 Surf. Sci. 186 95
[22]Lin C H, Lee G B, Lin Y H and Chang G L 2001 J. Micromech. Microeng. 11 726
[23]Washburn E W 1921 Phys. Rev. 17 273
[24]Jeong H E, Kim P, Kwak M K, Seo C H and Suh K Y 2007 Small 3 778
[25]Kim E, Xia Y N and Whitesides G M 1996 J. Am. Chem. Soc. 118 5722
[26]Duffy D C, Olivier J C M, Schueller J A and Whitesides G M 1998 Anal. Chem. 70 4974
[27]Saha A A, Mitra S K, Tweedie M, Roy S and McLaughlin J 2009 Microfluid. Nanofluid 7 451
Related articles from Frontiers Journals
[1] Yang Miao, Xiang Guo, Xiao-Jun Zhang. Visualization of Fiber Moving in Air Tunnel with Velocity Gradient[J]. Chin. Phys. Lett., 2020, 37(3): 044201
[2] Min-Qiu Liu, De-Qin Ouyang, Chun-Bo Li, Hui-Bin Sun, Shuang-Chen Ruan. Effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding[J]. Chin. Phys. Lett., 2018, 35(10): 044201
[3] Yi-Hui Huang, Hong-Wei Song, Chen-Guang Huang. Heat Transfer and Mode Transition for Laser Ablation Subjected to Supersonic Airflow[J]. Chin. Phys. Lett., 2016, 33(01): 044201
[4] ZHENG Zhi-Jian, OUYANG De-Qin, ZHAO Jun-Qing, RUAN Shuang-Chen, YU Jun, GUO Chun-Yu, WANG Jin-Zhang. An Effective Thermal Splicing Method to Join Fluoride and Silica Fibers for a High Power Regime[J]. Chin. Phys. Lett., 2015, 32(11): 044201
[5] MAO Ye-Fei, ZHANG Heng-Li, SANG Si-Han, ZHANG Xin, YU Xi-Long, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. High-Power Continuous-Wave Nd:GdVO4 Solid-State Laser Dual-End-Pumped at 880 nm[J]. Chin. Phys. Lett., 2015, 32(09): 044201
[6] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 044201
[7] CUI Zhi-Wei, HAN Yi-Ping, CHEN An-Tao. Electromagnetic Scattering of a High-Order Bessel Trigonometric Beam by Typical Particles[J]. Chin. Phys. Lett., 2015, 32(09): 044201
[8] ZHANG Pin-Liang, TANG Xiu-Zhang, LI Ye-Jun, WANG Zhao, TIAN Bao-Xian, YIN Qian, LU Ze, XIANG Yi-Huai, GAO Zhi-Xing, LI Jing, HU Feng-Ming, GONG Zi-Zheng. Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser[J]. Chin. Phys. Lett., 2015, 32(07): 044201
[9] LIU Zhong-Zheng, XUE Xiao-Bo, NIU Fu-Zeng, ZHANG Li-Guo, LING Li, CHEN Jing-Biao. Laser 728 nm Spectroscopy of Electrodeless Discharge Rb Lamp[J]. Chin. Phys. Lett., 2014, 31(12): 044201
[10] LIU Zhong-Zheng, TAO Zhi-Ming, JIANG Zhao-Jie, CHEN Jing-Biao. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter[J]. Chin. Phys. Lett., 2014, 31(12): 044201
[11] MAO Ye-Fei, ZHANG Heng-Li, XU Liu, DENG Bo, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. An 880-nm Laser-Diode End-Pumped Nd:YVO4 Slab Laser with a Hybrid Resonator[J]. Chin. Phys. Lett., 2014, 31(07): 044201
[12] CUI Zhi-Wei, HAN Yi-Ping, YU Mei-Ping. Numerical Investigation on Scattering of an Arbitrarily Incident Bessel Beam by Fractal Soot Aggregates[J]. Chin. Phys. Lett., 2014, 31(06): 044201
[13] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 044201
[14] JIA Hai-Ni, YANG Xiao-Jun, ZHAO Wei, ZHAO Hua-Long, DU Xu, YANG Yong. Femtosecond Laser Pulses for Drilling the Shaped Micro-Hole of Turbine Blades[J]. Chin. Phys. Lett., 2013, 30(4): 044201
[15] ZHANG Sheng-Nan, WANG Yan-Fei, ZHANG Tong-Gang, ZHUANG Wei, CHEN Jing-Biao. A Potassium Atom Four-Level Active Optical Clock Scheme[J]. Chin. Phys. Lett., 2013, 30(4): 044201
Viewed
Full text


Abstract