Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 038101    DOI: 10.1088/0256-307X/34/3/038101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells
Yue Zhang1, Cao Yu2, Miao Yang2, Lin-Rui Zhang1, Yong-Cai He1, Jin-Yan Zhang2, Xi-Xiang Xu2, Yong-Zhe Zhang1**, Xue-Mei Song1, Hui Yan1**
1College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
2Hanergy Thin Film Power, R & D Center, Chengdu 610200
Cite this article:   
Yue Zhang, Cao Yu, Miao Yang et al  2017 Chin. Phys. Lett. 34 038101
Download: PDF(744KB)   PDF(mobile)(735KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The key feature of amorphous/crystalline silicon heterojunction solar cells is extremely low surface recombination, which is related to superior passivation on the crystalline silicon wafer surface using thin hydrogenated amorphous silicon (a-Si:H) layers, leading to a high open-circuit voltage. In this work, a two-step method of a-Si:H passivation is introduced, showing excellent interface passivation quality, and the highest effective minority carrier lifetime exceeds 4500 μs. By applying a buffer layer deposited through pure silane plasma, the risk of film epitaxial growth and plasma damage caused by hydrogen diluted silane plasma is effectively reduced. Based on this, excellent passivation is realized through the following hydrogen diluted silane plasma process with the application of high density hydrogen. In this process, hydrogen diffuses to a-Si/c-Si interface, saturating residual dangling bonds which are not passivated by the buffer layer. Employing this two-step method, a heterojunction solar cell with an area of 239 cm$^{2}$ is prepared, yielding to open-circuit voltage up to 735 mV and total-area efficiency up to 22.4%.
Received: 23 November 2016      Published: 28 February 2017
PACS:  81.05.Gc (Amorphous semiconductors)  
  88.40.H- (Solar cells (photovoltaics))  
  88.40.jj (Silicon solar cells)  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61574009, 11274028, 11574014, 51302081 and 61575010, and the Science and Technology Commission of Beijing Municipality under Grant Nos Z151100003315018 and Z151100003515004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/038101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/038101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue Zhang
Cao Yu
Miao Yang
Lin-Rui Zhang
Yong-Cai He
Jin-Yan Zhang
Xi-Xiang Xu
Yong-Zhe Zhang
Xue-Mei Song
Hui Yan
[1]De Wolf S, Descoeudres A, Holman Z C and Ballif C 2012 Green 2 7
[2]Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H and Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518
[3]Zhou J, Di M D, Sun T T, Sun Y T and Wang H 2010 Acta Phys. Sin. 59 8870 (in Chinese)
[4]Schüttauf J W A, van der Werf C H M, Kielen I M, van Sark W G J H M, Rath J K and Schropp R E I 2012 J. Non-Cryst. Solids 358 2245
[5]Panda K, Sankaran K J, Panigrahi B K, Tai N H and Lin I N 2014 ACS Appl. Mater. Interfaces 6 8531
[6]Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guerin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J and Ballif C 2011 Appl. Phys. Lett. 99 123506
[7]Tang M Z, Ge J, Wong J, Ling Z P, Dippell T, Zhang Z H, Huber M, Doerr M, Hohn O, Wohlfart P, Aberle A G and Mueller T 2015 Phys. Status Solidi RRL 9 47
[8]Wang F, Zhang X, Wang L, Jiang Y, Wei C, Sun J and Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098
[9]Li J, Luo C, M Z G, Xiong S Z and Hwok H S 2013 Chin. Phys. B 22 105101
[10]Hu Z H, Liao X B, Liu Z M, Xia C F and Chen T J 2003 Chin. Phys. B 12 112
[11]Nakamura K, Yoshino K, Takeoka S and Shimizu I 1995 Jpn. J. Appl. Phys. 34 442
[12]Ramanujam J and Verma A 2012 Mater. Express 2 177
[13]Mahan A H, Raboisson P, Williamson D L and Tsu R 1987 Sol. Cells 21 117
[14]Chen J H, Yang J, Shen Y J, Li Feng, Chen J W, Liu H X, Xu Y and Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese)
[15]De Wolf S, Olibet S and Ballif C 2008 Appl. Phys. Lett. 93 032101
[16]Gogolin R, Ferre R, Turcu M and Harder N P 2012 Sol. Energy Mater. Sol. Cells 106 47
[17]Mews M, Schulze T F, Mingirulli N and Korte L 2013 Appl. Phys. Lett. 102 122106
[18]Shinohara M, Kuwano T, Akama Y, Kimura Y, Niwano M, Ishida H and Hatakeyama R 2003 J. Vac Sci. Technol. A 21 25
[19]Huang S Y, Chen K J, Shi J J, Huang X F, Xu J, Ganguly G and Matsuda A 2001 Jpn. J. Appl. Phys. 40 40
[20]Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L and Ballif C 2013 Appl. Phys. Lett. 102 231604
[21]Schuttauf J W A, van der Werf C H M, van Sark W G J H M, Rath J K and Schropp R E I 2011 Thin Solid Films 519 4476
[22]De Wolf S and Kondo M 2007 Appl. Phys. Lett. 90 042111
[23]Chu Y H, Lee C C, Chang T H, Chang S Y, Chang J Y, Li T and Chen I C 2014 Thin Solid Films 570 591
[24]Meddeb H, Bearda T, Abdelraheem Y, Ezzaouia H, Gordon I, Szlufcik J and Poortmans J 2015 J. Phys. D 48 415301
[25]Ge J, Ling Z P, Wong J, Stangl R, Aberle A G and Mueller T 2013 J. Appl. Phys. 113 234310
[26]Descoeudres A, Barraud L, Bartlome R, Choong G, De Wolf S, Zicarelli F and Ballif C 2010 Appl. Phys. Lett. 97 183505
[27]Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K and Maruyama E 2014 IEEE J. Photovoltaics 4 96
[28]Sriraman S, Agarwal S, Aydil E S and Maroudas D 2002 Nature 418 62
[29]Xue Y, Gao C J, Gu J H, Feng Y Y, Yang S E, Lu J X, Huang Q and Feng Z Q 2013 Acta Phys. Sin. 62 197301 (in Chinese)
[30]An I, Li Y M, Wronski C R and Collins R W 1993 Amorphous Silicon Technol. 297 43
[31]Terakawa A 2013 Sol. Energy Mater. Sol. Cells 119 204
[32]Beyer W 2016 Phys. Status Solidi A 213 1661
[33]Jin S and Ley L 1991 Phys. Rev. B 44 1066
[34]Gertkemper T, Ristein J and Ley L 1993 J. Non-Cryst. Solids 164 123
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 038101
[2] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 038101
[3] Chong Wang, Hao Zhong, Eddy Simoen, Xiang-Dong Jiang, Ya-Dong Jiang, Wei Li. Structural Variation and Its Influence on the $1/f$ Noise of a-Si$_{1-x}$Ru$_{x}$ Thin Films Embedded with Nanocrystals[J]. Chin. Phys. Lett., 2019, 36(2): 038101
[4] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 038101
[5] QUAN Xiao-Tong, ZHU Hui-Chao, CAI Hai-Tao, ZHANG Jia-Qi, WANG Xiao-Jiao. Resistive Switching Behavior in Amorphous Aluminum Oxide Film Grown by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2014, 31(07): 038101
[6] ZUO Ze-Wen, CUI Guang-Lei, WANG Yu, WANG Jun-Zhuan, PU Lin, SHI Yi. GISAXS and ATR-FTIR Studies on Stress-Induced Microstructure Evolution of a-Si:H under H2 Plasma Exposure[J]. Chin. Phys. Lett., 2012, 29(10): 038101
[7] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 038101
[8] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 038101
[9] DING Xu-Li, LI Qing-Shan, KONG Xiang-He. Optical and Electrical Properties Evolution of Diamond-Like Carbon Thin Films with Deposition Temperature[J]. Chin. Phys. Lett., 2009, 26(2): 038101
[10] GONG Yue-Feng, LING Yun, SONG Zhi-Tang, FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin. Phys. Lett., 2008, 25(9): 038101
[11] Raid A. Ismail, Kadhim A. Hubeatir, Abdullah K. Abass. Amorphous/Crystalline (n-n) Si Heterojunction Photodetector Made by Q-Switched 0.532-mm Laser Pulses with Novel Technique[J]. Chin. Phys. Lett., 2006, 23(2): 038101
[12] DONG Liang, YUE Rui-Feng, LIU Li-Tian, ZHANG Wan-Jie. Freestanding a-Si Thin Film Transistor for Room-Temperature Infrared Detection[J]. Chin. Phys. Lett., 2004, 21(2): 038101
[13] MAO Dong-sheng, ZHAO Jun, LI Wei, WANG Xi, LIU Xiang-huai, ZHU Yu-kun, ZHOU Jiang-yun, FAN Zhong, LI Qiong, XU Jing-fang. Electron Field Emission from Different sp3 Content Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 1999, 16(2): 038101
Viewed
Full text


Abstract