Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 028801    DOI: 10.1088/0256-307X/34/2/028801
The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter
Jun-Na Zhang, Lei Wang**, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang**
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
Jun-Na Zhang, Lei Wang, Zhun Dai et al  2017 Chin. Phys. Lett. 34 028801
Download: PDF(1484KB)   PDF(mobile)(1479KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A nano-structured surface is formed on the pyramid structure of n-type silicon solar cells by size-controlled silver nano-particle assisted etching. Such a nano-structure creates a front average weighted reflectance of less than 2.5% in the 300–1200 nm range due to the broadband reflection suppression. The sodium hydroxide is used to obtain the low-area surface by post-etching the nano-structure, thus the severe carrier recombination associated with the nano-structured surface could be reduced. After emitter forming, screen printing and firing by means of the industrial fabrication protocol, an 18.3%-efficient nano-structured silicon solar cell with rear emitter is fabricated. The process of fabricating the solar cells matches well with industrial manufacture and shows promising prospects.
Received: 09 November 2016      Published: 25 January 2017
PACS:  88.40.jj (Silicon solar cells)  
  81.65.Cf (Surface cleaning, etching, patterning)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
  84.60.Jt (Photoelectric conversion)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51532007, the Major Projects of Zhejiang Province under Grant No 2013C01037, and the Foundation of State Key Lab of Silicon Materials.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jun-Na Zhang
Lei Wang
Zhun Dai
Xun Tang
You-Bo Liu
De-Ren Yang
[1]Cheng H H, Chang Y Y, Chu J Y et al 2012 Appl. Phys. Lett. 101 141113
[2]Singh P K, Kumar R, Lal M et al 2001 Sol. Energy Mater. Sol. Cells 70 103
[3]Dimitrov D Z and Du C H 2013 Appl. Surf. Sci. 266 1
[4]Khuat V, Ma Y C, Si J H et al 2014 Chin. Phys. Lett. 31 037901
[5]Li T, Zhou C L, Wang W J 2016 Chin. Phys. Lett. 33 038801
[6]Otto M, Kroll M, Käsebier T et al 2010 Adv. Mater. 22 5035
[7]Marrero N, Guerrero L R, González D B et al 2009 Thin Solid Films 517 2648
[8]Ge J, Yin W J, Long Y F et al 2007 Chin. Phys. Lett. 24 1361
[9]Li X and Bohn P W 2000 Appl. Phys. Lett. 77 2572
[10]Peng K and Zhu J 2004 Electrochim. Acta 49 2563
[11]Gu X, Yu X G, Liu T et al 2011 Nanotechnology 22 025703
[12]Chartier C, Bastide S and Lévy-Clément C 2008 Electrochim. Acta 53 5509
[13]Srivastava S K, Kumar D, Vandana et al 2012 Sol. Energy Mater. Sol. Cells 100 33
[14]Xiao J F, Wang L, Li X et al 2010 Appl. Surf. Sci. 257 472
[15]Li D, Wang L, Li D S et al 2013 Appl. Surf. Sci. 264 621
[16]Oh J, Yuan H C and Branz H M 2012 Nat. Nanotechnol. 7 743
[17]Zheng X, Yu X G and Yang D R 2013 Acta Phys. Sin. 62 198801 (in Chinese)
[18]Cuevas A, Kerr M J, Samundsett C et al 2002 Appl. Phys. Lett. 81 4952
[19]Schmidt J, Bothe K, Bock R et al 2007 22nd European Photovoltaic Solar Energy Conference (Milan, Italy 3–7 September 2007) p 998
[20]Fertig F, Wöhrle N, Greulich J et al 2016 Prog. Photovoltaics 24 818
[21]Liu T, Li D, Yang D et al 2011 Mater. Lett. 65 628
[22]Branz H M, Yost V E, Ward S et al 2009 Appl. Phys. Lett. 94 231121
Related articles from Frontiers Journals
[1] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 028801
[2] Yue Zhang, Cao Yu, Miao Yang, Lin-Rui Zhang, Yong-Cai He, Jin-Yan Zhang, Xi-Xiang Xu, Yong-Zhe Zhang, Xue-Mei Song, Hui Yan. Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(3): 028801
[3] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 028801
[4] Tao Li, Chun-Lan Zhou, Wen-Jing Wang. Comprehensive Study of SF$_{6}$/O$_{2}$ Plasma Etching for Mc-Silicon Solar Cells[J]. Chin. Phys. Lett., 2016, 33(03): 028801
[5] LI Tao, WANG Wen-Jing. Calculated and Experimental Research of Sheet Resistances of Laser-Doped Silicon Solar Cells[J]. Chin. Phys. Lett., 2015, 32(02): 028801
[6] GUO Chun-Lin, WANG Lei, ZHANG Yan-Rong, ZHOU Hai-Feng, LIANG Feng, YANG Zhen-Hui, YANG De-Ren. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface[J]. Chin. Phys. Lett., 2014, 31(10): 028801
[7] ZHANG Wei, CHEN Chen, JIA Rui, Janssen G. J. M., ZHANG Dai-Sheng, XING Zhao, Bronsveld P. C. P., Weeber A. W., JIN Zhi, LIU Xin-Yu . Optimization of Metal Coverage on the Emitter in n-Type Interdigitated Back Contact Solar Cells Using a PC2D Simulation[J]. Chin. Phys. Lett., 2013, 30(7): 028801
[8] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 028801
[9] MA Xun, LIU Zu-Ming, QU Sheng, WANG Shu-Rong, HAO Rui-Ting, LIAO Hua . A New Method to Measure Trap Characteristics of Silicon Solar Cells[J]. Chin. Phys. Lett., 2011, 28(2): 028801
Full text