Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 027501    DOI: 10.1088/0256-307X/34/2/027501
Micromagnetic Studies of Finite Temperature $M$–$H$ Loops for FePt-C Media
Long-Ze Wang1, Jing-Yue Miao1, Zhen Zhao1, Chuan Liu2, Dan Wei1**
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2School of Physics, Peking University, Beijing 100871
Cite this article:   
Long-Ze Wang, Jing-Yue Miao, Zhen Zhao et al  2017 Chin. Phys. Lett. 34 027501
Download: PDF(547KB)   PDF(mobile)(549KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We have recently developed a new micromagnetic method at finite temperature, where the Hybrid Monte Carlo method is employed to realize the Boltzmann distribution with respect to the magnetic free energy. Hence, the hysteresis loops and domain structures at arbitrary temperature below the Curie point $T_{\rm c}$ can be simulated. The Hamilton equations are used to find the magnetization distributions instead of the Landau–Lifshitz (LL) equations. In our previous work, we applied this method on a simple uniaxial anisotropy nano-particle and compared it with the micromagnetic method using LL equations. In this work, we use this new method to simulate an L10 FePt-C granular thin film at finite temperatures. The polycrystalline Voronoi microstructure is included in the model, and the effects of the misorientation of FePt grains are also simulated.
Received: 29 September 2016      Published: 25 January 2017
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  75.50.Ss (Magnetic recording materials)  
  52.65.Pp (Monte Carlo methods)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51171086 and 51371101.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Long-Ze Wang
Jing-Yue Miao
Zhen Zhao
Chuan Liu
Dan Wei
[1]Wei D, Song J J, Liu C 2016 IEEE Trans. Magn. 52 7100808
[2]Wang J, Hata S, Takahashi Y K, Sepehri-Amin H, Varaprasad B S D Ch S, Shiroyama T, Schrefl T and Hono K 2015 Acta Mater. 91 41
[3]Thiele J U, Coffey K R, Toney M F, Hedstrom J A and Kellock A J 2002 J. Appl. Phys. 91 6595
[4]Landau L D and Lifshitz E M 1960 Eletrodynamics of Continuous Media (Oxford: Pergamon Press)
[5]Chantrell R W, Tako K M, Wongsam M, Walmsley N and Schrefl T, 1997 J. Magn. Magn. Mater. 175 137
[6]Wang L Z, Li J N, Zhao Z, Wei D and Gao K Z 2015 IEEE Trans. Magn. 51 3202304
[7]Varaprasad B S D Ch S, Takahashi Y K, Wang J, Ina T, Nakamura T, Ueno W, Nitta K, Uruga T and Hono K 2014 Appl. Phys. Lett. 104 222403
[8]Zhao Z, Li J N, Wang L Z and Wei D MMM Conference (New Orleans, Louisiana October 31–November 4 2016)
[9]Bertram N 1994 Theory of Magnetic Recording (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Jing-Yue Miao. Machine Learning and Micromagnetic Studies of Magnetization Switching[J]. Chin. Phys. Lett., 2019, 36(9): 027501
[2] Guang-Tian Hai, Wen-Xiu Zhao, Jia-Shu Chen, Zheng-Hua Li, Jia-Liang He. Magnetoresistance Detection of Vortex Domain in a Notched FeNi Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 027501
[3] Jiang-Nan Li, Dan Wei,. Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics[J]. Chin. Phys. Lett., 2017, 34(4): 027501
[4] Long-Ze Wang, Jiang-Nan Li, Jun-Jie Song, Chuan Liu, Dan Wei. Simulation of $M$–$H$ Loops in FeCo Polycrystalline Thin Films at Finite Temperatures[J]. Chin. Phys. Lett., 2017, 34(4): 027501
[5] LI Yi, XU Ben, HU Shen-Yang, LI Yu-Lan, LI Qiu-Lin, LIU Wei. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle[J]. Chin. Phys. Lett., 2015, 32(06): 027501
[6] CHENG Zhi-Da, ZHU Jing, **, TANG Zheng . Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(3): 027501
Full text