Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 027302    DOI: 10.1088/0256-307X/34/2/027302
Ballistic Transport through a Strained Region on Monolayer Phosphorene
Yi Ren, Fang Cheng**
Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
Yi Ren, Fang Cheng 2017 Chin. Phys. Lett. 34 027302
Download: PDF(990KB)   PDF(mobile)(985KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate quantum transport of carriers through a strained region on monolayer phosphorene theoretically. The electron tunneling is forbidden when the incident angle exceeds a critical value. The critical angles for electrons tunneling through a strain region for different strengths and directions of the strains are different. Owing to the anisotropic effective masses, the conductance shows a strong anisotropic behavior. By tuning the Fermi energy and strain, the channels can be transited from opaque to transparent, which provides us with an efficient way to control the transport of monolayer phosphorene-based microstructures.
Received: 12 November 2016      Published: 25 January 2017
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374002, the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Construct Program of the Key Discipline in Hunan Province.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yi Ren
Fang Cheng
[1]Li X, Du Y, Si M, Yang L, Li S, Li T, Xiong X, Ye P and Wu Y 2016 Nanoscale 8 3572
[2]Churchill H O and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 330
[3]Reich E S 2014 Nature 506 19
[4]Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J and van der Zant H S J 2014 Two-Dimensional Mater. 1 025001
[5]Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[6]Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[7]Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[8]Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang Kai, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593
[9]Zhang R, Zhou X Y, Zhang D, Lou W K, Zhai F and Chang K 2015 Two-Dimensional Mater. 2 045012
[10]Zhou X, Lou W K, Zhai F and Chang K 2015 Phys. Rev. B 92 165405
Sisakht E T, Zare M H and Fazileh F 2015 Phys. Rev. B 91 085409
Ezawa M 2014 New J. Phys. 16 115004
[11]Nourbakhsh Z and Asgari R 2016 Phys. Rev. B 94 035437
[12]Verma D, Hourahine B, Frauenheim T, James R D and Dumitrică T 2016 Phys. Rev. B 94 121404(R)
[13]Qin G, Zhang X, Yue S Y, Qin Z, Wang H, Han Y and Hu M 2016 Phys. Rev. B 94 165445
[14]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[15]Elahi M, Khaliji K, Tabatabaei S M, Pourfath M and Asgari R 2015 Phys. Rev. B 91 115412
[16]Jose P S, Parente V, Guinea F, Roldá n R and Prada E 2016 Phys. Rev. X 6 031046
[17]Fei R and Yang L 2014 Nano Lett. 14 2884
[18]Voon L C L Y, Lopez-Bezanilla A, Wang J, Zhang Y and Willatzen M 2015 New J. Phys. 17 025004
[19]Rodin A S, Carvalho A and Castro N A H 2014 Phys. Rev. Lett. 112 176801
[20]Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[21]Takao Y, Asahina H and Morita A 1981 J. Phys. Soc. Jpn. 50 3362
[22]Wang C, Xia Q, Nie Y and Gu G 2015 J. Appl. Phys. 117 124302
[23]Sa B, Li Y L, Qi J, Ahuja R and Sun Z 2014 J. Phys. Chem. C 118 26560
[24]Tang H, Jiang J W, Wang B S and Su Z B 2009 Solid State Commun. 149 82
[25]Harrison W A 1999 Elementary Electronic Structure (Singapore: World Scientific Press)
[26]Taghizadeh Sisakht E, Fazileh F, Zare M H, Zarenia M and Peeters F M 2016 Phys. Rev. B 94 085417
[27]Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 201408(R)
[28]Liu Q, Zhang X, Abdalla L, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
[29]Zhang T, Lin J H, Yu Y M, Chen X R and Liu W M 2015 Sci. Rep. 5 13927
Related articles from Frontiers Journals
[1] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 027302
[2] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 027302
[3] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 027302
[4] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 027302
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 027302
[6] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 027302
[7] Rui-Kuan Xie, Ai-Jiang Lu, Huai-Zhong Xing, Yi-Jie Zeng, Yan Huang, Xiao-Shuang Chen. First Principles Study on the Magnetism of Rectangular Nanosilicenes[J]. Chin. Phys. Lett., 2018, 35(1): 027302
[8] Ruo-Yu Zhang, Ji-Ming Zheng, Zhen-Yi Jiang. Strain Effects on Properties of Phosphorene and Phosphorene Nanoribbons: a DFT and Tight Binding Study[J]. Chin. Phys. Lett., 2018, 35(1): 027302
[9] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 027302
[10] Yu-Feng An, Zhen-Hong Dai, Yin-Chang Zhao, Chao Lian, Zhao-Qing Liu. Band Gap Adjustment of SiC Honeycomb Structure through Hydrogenation and Fluorination[J]. Chin. Phys. Lett., 2017, 34(1): 027302
[11] Fang Cheng, Bing He. Anisotropic Ballistic Transport through a Potential Barrier on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2016, 33(05): 027302
[12] Gui-Li Yu, Yong-Lei Jia, Gang Tang. Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes[J]. Chin. Phys. Lett., 2016, 33(03): 027302
[13] WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui. Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids[J]. Chin. Phys. Lett., 2015, 32(11): 027302
[14] PAN Li-Jun, ZHANG Jie, CHEN Wei-Guang, TANG Ya-Nan. Stability and Electronic Properties of Hydrogenated Zigzag Carbon Nanotube Focused on Stone–Wales Defect[J]. Chin. Phys. Lett., 2015, 32(03): 027302
[15] LAI Xin, ZHANG Xi, ZHANG Yi-Xi, XIANG Gang. Impact of Surface Passivation on the Electronic Structure and Optical Properties of the Si1−xGex Nanowires[J]. Chin. Phys. Lett., 2015, 32(02): 027302
Full text