Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 026402    DOI: 10.1088/0256-307X/34/2/026402
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Intrinsic Features of an Ideal Glass
Deyan Sun1,3, Cheng Shang2, Zhipan Liu2, Xingao Gong3,4**
1Department of Physics, East China Normal University, Shanghai 200062
2Department of Chemistry, Fudan University, Shanghai 200433
3Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Deyan Sun, Cheng Shang, Zhipan Liu et al  2017 Chin. Phys. Lett. 34 026402
Download: PDF(687KB)   PDF(mobile)(681KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to understand the long-standing problem of the nature of glass states, we perform intensive simulations on the thermodynamic properties and potential energy surface of an ideal glass. It is found that the atoms of an ideal glass manifest cooperative diffusion, and show clearly different behavior from the liquid state. By determining the potential energy surface, we demonstrate that the glass state has a flat potential landscape, which is the critical intrinsic feature of ideal glasses. When this potential region is accessible through any thermal or kinetic process, the glass state can be formed and a glass transition will occur, regardless of any special structural character. With this picture, the glass transition can be interpreted by the emergence of configurational entropies, as a consequence of flat potential landscapes.
Received: 22 January 2017      Published: 25 January 2017
PACS:  64.70.pe (Metallic glasses)  
  61.43.Fs (Glasses)  
  61.20.Ja (Computer simulation of liquid structure)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Supported by the National Natural Science Foundation of China, and the National Basic Research Program of China.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/026402       OR      http://cpl.iphy.ac.cn/Y2017/V34/I2/026402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Deyan Sun
Cheng Shang
Zhipan Liu
Xingao Gong
[1]Kennedy D and Norman C 2005 Science 309 75
[2]Angell C A 1995 Science 267 1924
[3]Debenedetti P G and Stillinger F H 2001 Nature 410 259
[4]Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[5]Dyre J C 2006 Rev. Mod. Phys. 78 953
[6]Cavagna A 2009 Phys. Rep. 476 51
[7]Wang W H 2012 Prog. Mater. Sci. 57 487
[8]Micoulaut M 2016 Rep. Prog. Phys. 79 066504
[9]Kauzmann W 1948 Chem. Rev. 43 219
[10]Gibbs J H and DiMarzio E A 1958 J. Chem. Phys. 28 373
[11]Cohen M H and Turnbull D 1959 J. Chem. Phys. 31 1164
[12]Angell C A 1968 J. Am. Ceram. Soc. 51 125
[13]Kirkpatrick T R, Thirumalai D and Wolynes P G 1989 Phys. Rev. A 40 1045
[14]Cammarota C and Biroli G 2012 Proc. Natl. Acad. Sci. USA 109 8850
[15]Sun D Y and Gong X G 1998 Phys. Rev. B 57 4730
[16]Noya E G, Doye J P K and Calvo F 2006 Phys. Rev. B 73 125407
[17]Neal C M, Starace A K and Jarrold M F 2007 J. Am. Soc. Mass Spectr. 18 74
[18]Shang C and Liu Z P 2013 J. Chem. Theory Comput. 9 1838
[19]Zhang X J, Shang C and Liu Z P 2013 J. Chem. Theory Comput. 9 3252
[20]Doye J P K 2003 J. Chem. Phys. 119 1136
[21]Shang C, Zhao W N and Liu Z P 2015 J. Phys.: Condens. Matter 27 134203
[22]Wei G F, Shang C and Liu Z P 2015 Phys. Chem. Chem. Phys. 17 2078
[23]Ercolessi F and Adams J B 1994 Europhys. Lett. 26 583
[24]Sun D Y and Gong X G 2002 J. Phys.: Condens. Matter 14 L487
[25]Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[26]Zhang X J, Shang C and Liu Z P 2017 Phys. Chem. Chem. Phys. (accepted)
[27]Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[28]Tombari E, Ferrari C, Salvetti G and Johari G P 2008 Phys. Rev. B 77 024304
[29]Goldstein M 1969 J. Chem. Phys. 51 3728
[30]Grigera T S, Cavagna A, Giardina I and Parisi G 2002 Phys. Rev. Lett. 88 055502
Related articles from Frontiers Journals
[1] Zi-Jing Li, Lin-Ran Zhao, Yu-Ting Wang, Ze-Ming Chen, Wen-Kang Tu, Ya-Qi Zhang, Hong Bo, Ying-Dan Liu, Li-Min Wang. An Attempt to Prepare Metallic Glasses from Quasicrystals[J]. Chin. Phys. Lett., 2016, 33(04): 026402
[2] CHAI Kan, LIN Tie-Song, HE Peng, SUN Jian-Fei. The Kinetic Theory of Growth of Zr-Sn Diffusion Layers on Zr55Cu30Al10Ni5 Metallic Glass[J]. Chin. Phys. Lett., 2014, 31(11): 026402
[3] BI Qing-Ling, LÜ Yong-Jun. A Kinetic Transition from Low to High Fragility in Cu-Zr Liquids[J]. Chin. Phys. Lett., 2014, 31(10): 026402
[4] KE Hai-Bo,ZHAO Zuo-Feng,WEN Ping**,WANG Wei-Hua. Specific Heat in a Typical Metallic Glass Former[J]. Chin. Phys. Lett., 2012, 29(4): 026402
[5] ZHANG Chun-Zhi, HU Li-Na**, BIAN Xiu-Fang, YUE Yuan-Zheng, . Fragile-to-Strong Transition in Al-Ni-M (M=La, Pr, Nd) Metallic Glasses[J]. Chin. Phys. Lett., 2010, 27(11): 026402
[6] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 026402
[7] JIANG Min-Qiang, JIANG Si-Yue$, DAI Lan-Hong,. Inherent Shear-Dilatation Coexistence in Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(1): 026402
[8] YANG Hong-Wang, TONG Wei-Ping, ZHAO Xiang, ZUO Liang, WANG Jian-Qiang. Observation of β-Relaxation in Sub-Tg Isothermally Annealed Al-Based Metallic Glasses[J]. Chin. Phys. Lett., 2008, 25(9): 026402
[9] GUO Xiao-Lin, SHAN De-Bin, MA Ming-Zhen, GUO Bin. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(6): 026402
Viewed
Full text


Abstract