Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 117201    DOI: 10.1088/0256-307X/34/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
New Method for 3D Transient Eddy Current Field Calculation and Its Application in Magneto-Acoustic Tomography
Yuan-Yuan Li1,2, Guo-Qiang Liu1,2**, Hui-Xia1**, Li-Li Hu1
1Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Yuan-Yuan Li, Guo-Qiang Liu, Hui-Xia et al  2017 Chin. Phys. Lett. 34 117201
Download: PDF(662KB)   PDF(mobile)(657KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
Received: 03 May 2017      Published: 25 October 2017
PACS:  72.55.+s (Magnetoacoustic effects)  
  43.35.Rw (Magnetoacoustic effect; oscillations and resonance)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  87.57.nf (Reconstruction)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51137004, 61427806 and 51577184, and the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/117201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/117201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Yuan Li
Guo-Qiang Liu
Hui-Xia
Li-Li Hu
[1]Noda T 2008 IEEE Trans. Power Delivery 23 1262
[2]Danielsen J E, Auken E, Jørgensen F, Søndergaard V and Sørensen K I 2003 J. Appl. Geophys. 53 181
[3]Wu G J, Shen C Y, Tan H B and Yang G L 2016 Acta Seismol. Sin. 29 235
[4]Li X and He B 2010 IEEE Trans. Med. Imaging 29 1759
[5]Xu Y and He B 2005 Phys. Med. Biol. 50 5175
[6]Yu K, shao Q, Ashkenazi S, Bischof J C and He B 2016 IEEE Trans. Med. Imaging 35 2301
[7]He W, Liu G, Zhang Y and Zeng X P 2010 Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010 4983
[8]Ammari H, Boulmier S and Millien P 2015 Mathematics 259 5379
[9]Hu G, Li X and He B 2010 Appl. Phys. Lett. 97 103705
[10]Huang X, Liu G and Xia H 2014 Adv. Mater. Res. 756 4677
[11]Li Y L, Liu Z B, Ma Q Y, Guo X S and Zhang D 2010 Chin. Phys. Lett. 27 084302
[12]Chen X Z, Ma Q Y, Zhang F, Sun X D and Cui H C 2012 Chin. Phys. Lett. 29 097203
[13]Han W, Shah J and Balaban R S 1998 IEEE Trans. Biomed. Eng. 45 119
[14]Xu Y, Haider S and Hrbek A 2007 IFMBE Proc. 17 292
[15]Haider S, Hrbek A and Xu Y 2008 Physiological Meas. 29 S41
[16]Zeng X P, Liu G Q, Xia H and Xu X 2010 Proc. 2010-Int. Conf. Biomed. Eng. Inf. BMEI. 1 95
[17]Kunyansky L 2012 Inverse Probl. 28 35002
[18]Guo L, Liu G Q, Xia H and Chen J 2013 Chin. Phys. Lett. 30 124303
[19]GraslandMongrain P, Mari J M, Chapelon J Y and Lafon C 2013 IRBM 34 357
[20]Guo L, Liu G Q, Xia H, Liu Y and Lu M H 2014 Chin. Phys. B 23 104303
[21]Guo L, Liu G F, Yang Y J and Liu G Q 2015 Chin. Phys. Lett. 32 094301
[22]Zengin R and Gençer N G 2016 Phys. Med. Biol. 61 5887
[23]Robert P, Ito M and Takahasi T 1992 IEEE Trans. Magn. 28 1166
[24]Lin Q H and Li B M 2010 Nanjing Li Gong Daxue Xuebao 34 217 (in Chinese)
[25]Cui X, Li S, Feng H and Li G 2017 J. Comput. Phys. 336 192
[26]Soleimani M and Lionheart W R B 2006 IEEE Trans. Med. Imaging 25 1521
[27]O'Brien K, Daducci A, Kickler N, lazeyras F, Gruetter R, Feiweier T and Krueger G 2013 IEEE Trans. Med. Imaging 32 1515
[28]Morisue T 1982 IEEE Trans. Magn. 18 531
[29]He B 2005 Conf Proc. IEEE Eng. Med. Biol. Soc. 4 4178
[30]Zhang S, Zhang X Y, Wang H B, Zhao M K, Li Y, Xu G Z and Yan W L 2016 IEEE Trans. Magn. 52 1
[31]Guo G P, Ding H P, Dai S J and Ma Q Y 2017 Chin. Phys. B 26 084301
Related articles from Frontiers Journals
[1] Zhi-Shen Sun, Guo-Qiang Liu, Hui Xia. Lorentz Force Electrical Impedance Detection Using Step Frequency Technique[J]. Chin. Phys. Lett., 2018, 35(1): 117201
[2] LI Yi-Ling, LIU Zhen-Bo, MA Qing-Yu, GUO Xia-Sheng, ZHANG Dong. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction[J]. Chin. Phys. Lett., 2010, 27(8): 117201
Viewed
Full text


Abstract