Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 106801    DOI: 10.1088/0256-307X/34/10/106801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix
S. Fahad1, M. Ali1**, S. Ahmed1, S. Khan1, S. Alam1, S. Akhtar2
1Advanced Electronics Laboratories, International Islamic University Islamabad, Pakistan
2Department of Physics, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan
Cite this article:   
S. Fahad, M. Ali, S. Ahmed et al  2017 Chin. Phys. Lett. 34 106801
Download: PDF(485KB)   PDF(mobile)(484KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1–5 k$\Omega/\square$. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 $\Omega/\square$ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process annealing on its electrical fabrication.
Received: 10 April 2017      Published: 27 September 2017
PACS:  68.65.Pq (Graphene films)  
  81.05.ue (Graphene)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  73.40.Cg (Contact resistance, contact potential)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/106801       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/106801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Fahad
M. Ali
S. Ahmed
S. Khan
S. Alam
S. Akhtar
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2]Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5776
[3]Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4]Dubertret B, Thomas H and Mauricio T 2015 Acc. Chem. Res. 48 1
[5]Warner J H, Schaffel F, Rummeli M and Bachmatiuk A 2012 Graphene: Fundamentals and Emergent Applications (Amsterdam: Elsevier)
[6]Maier F, Riedel M, Mantel B, Ristein J and Ley L 2000 Phys. Rev. Lett. 85 3472
[7]Ma X and Zhang H 2013 Nanoscale Res. Lett. 8 440
[8]Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I and Kim Y J 2010 Nat. Nanotechnol. 5 574
[9]Varykhalov A, Marchenko D, Sánchez-Barriga J, Scholz M R, Verberck B, Trauzettel B, Wehling T O, Carbone C and Rader O 2012 Phys. Rev. X 2 041017
[10]Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
[11]Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Lett. 17 17630
[12]Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 8 109
[13]Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[14]Matsumoto K 2015 Frontiers of Graphene and Carbon Nanotubes: Devices and Applications (Tokyo: Springer)
[15]Fang T, Konar A, Xing H and Jena D 2007 Appl. Phys. Lett. 91 092109
[16]Dorgan V E, Bae M H and Pop E 2010 Appl. Phys. Lett. 97 082112
[17]Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[18]Kang J, Hwang S, Kim J H, Kim M H, Ryu J, Seo S J, Hong B H, Kim M K and Choi J B 2012 ACS Nano 6 5360
[19]Choi J S, Choi H, Kim K C, Jeong H Y, Yu Y J, Kim J T, Kim J S, Shin J W, Cho H and Choi C G 2016 Sci. Rep. 6
Related articles from Frontiers Journals
[1] Jie Jiang, Long Yan, and Haiping Fang. Effect of Oxide Content of Graphene Oxide Membrane on Remarkable Adsorption for Calcium Ions[J]. Chin. Phys. Lett., 2021, 38(10): 106801
[2] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 106801
[3] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 106801
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 106801
[5] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 106801
[6] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 106801
[7] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 106801
[8] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 106801
[9] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 106801
[10] XIE Nan, GONG Hui-Qi, ZHOU Zhi, GUO Xiao-Dong, YAN Shi-Chao, SUN Qian, XING Sirui, WU Wei, PEI Shin-shem, BAO Jiming, SHAN Xin-Yan, GUO Yang, LU Xing-Hua . Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale[J]. Chin. Phys. Lett., 2013, 30(5): 106801
[11] WANG Wen-Rong, LIANG Chen, LI Tie, YANG Heng, LU Na, WANG Yue-Lin. Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(2): 106801
[12] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 106801
Viewed
Full text


Abstract