Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 017801    DOI: 10.1088/0256-307X/34/1/017801
Thermoluminescence Kinetic Parameters of TLD-600 and TLD-700 after $^{252}$Cf Neutron+Gamma and $^{90}$Sr-$^{90}$Y Beta Radiations
S. İflazoğlu**, V. E. Kafadar, B. Yazici, A. N. Yazici
University of Gaziantep, Department of Engineering Physics, Gaziantep 27310, Turkey
Cite this article:   
S. İflazoğlu, V. E. Kafadar, B. Yazici et al  2017 Chin. Phys. Lett. 34 017801
Download: PDF(1273KB)   PDF(mobile)(1276KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermoluminescent (TL) properties such as glow curve structure, relative thermoluminescence sensitivity, dose response linearity of lithium fluoride thermoluminescent dosimeters $^{6}$LiF:Ti,Mg (TLD-600) and $^{7}$LiF:Ti,Mg (TLD-700) are investigated after irradiation $^{252}$Cf neutron+gamma and $^{90}$Sr-$^{90}$Y beta sources at room temperature and then the obtained results are compared. The kinetic parameters, namely the order of kinetics $b$, activation energy $E_{\rm a}$ and the frequency factor $s$, are calculated using the computerized glow curve deconvolution (CGCD) program. The effect of heating rate on the glow curves of dosimeters is also investigated. The maximum TL peak intensities and the total area under the glow curves decrease with the increasing heating rate. There is no agreement with the kinetic parameters calculated by the CGCD program for both radiation sources.
Received: 15 July 2016      Published: 29 December 2016
PACS:  78.60.Kn (Thermoluminescence)  
  78.66.Sq (Composite materials)  
Fund: Supported by the University of Gaziantep Scientific Research Projects Coordination Unit under Grant No MF.14.16.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
S. İflazoğlu
V. E. Kafadar
B. Yazici
A. N. Yazici
[1]Kim J L, Lee J I, Chang I, Pradhan A S, Kim S I and Kim B H 2013 Radiat. Meas. 56 223
[2]Bedogni R, Esposito A, Angelone M and Chiti M 2005 IEEE Nucl. Sci. Symp. Conf. Record N p 14
[3]Gambarını G and Sinha Roy M 1997 Appl. Radiat. Isot. 48 1467
[4]Triolol A, Brail M, Marralel M, Gennarol G and Bartolotta A 2007 Radiat. Protection Dosimetry p 1
[5]Lee J I, Pradhan A S, Kim J L, Kim B H and Yim K S 2008 J. Nucl. Sci. Technol. 45 233
[6]Triolo A, Marrale M and Brai M 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 264 183
[7]Youssian D and Horowitz Y S 1998 Radiat. Prot. Dosim. 77 151
[8]Yasuda H and Fujitaka K 2000 Radiat. Meas. 32 355
[9]Horowitz Y S and Shachart B B 1988 Radiat. Prot. Dosim. 23 401
[10]Berger T and Hajek M 2008 Radiat. Meas. 43 1467
[11]Strauss L and Hajek M Vienna University of Technology Atomic Institute of the Austrian Universities (Wien, Austria)
[12]Hiroshi Y 2000 Radioisotopes 49 260
[13]Triolo A, Brai M, Marrale M, Gennaro G and Bartolotta A 2007 Radiat. Protection Dosimetry p 1
[14]SNRS United States Nuclear Regulatory Commission Protecting People and the Environment (nrc. gov)
[15]Kumar M, Chourasiya G, Bhatt B C and Sunta C M 2010 J. Lumin. 130 1216
[16]Yazıcı A N, Hacıibrahimoğlu M Y and Bedir M 2000 Turkish J. Phys. 24 623
[17]Rasheedy M S and Zahran E M 2006 Inst. Phys. Publishing 73 98
[18]Kadari A and Kadri D 2015 Arabian J. Chem. 8 798
[19]Bos A J J, Piters J M, Gomez Ros J M and Delgado A 1993 (GLOCANIN Intercomparision Glow Curve Anal. Comput. Programs) IRI-CIEMAT Report 131-93-005 IRI Delft
[20]Horowitz Y S and Yossian D 1995 Appl. ThermoLumin. Dosimetry Radiat. Prot. Dosim 60 1
[21]Afouxenidis D, Polymeris G S, Tsirliganis N C and Kitis G 2012 Radiat. Prot. Dosim. 149 363
[22]Kitis G, Carinou E and Askounis P 2012 Radiat. Meas. 47 258
[23]Mathur V K 1983 Res. Technol. Department NSWC TR 83
[24]Knoll F G 2000 Radiat. Detection Meas. 3rd edn (Birlin: John Wiley) chap 14
[25]Mendez R, Iniguez M P, Barquero R, Mananes A, Gallego E, Lorente A and Voytchev M 2002 Radiat. Prot. Dosim. 98 173
[26]Morehead F F and Daniels R 1957 J. Chem. Phys. 27 1318
[27]Wingate C L 1951 Proc. Intern. Conf. Lumin. Dosimetry (Stanford) 42
[28]Mukherjee B 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 385 179
[29]Yoo Y S, Kim P S and Moon P S 1975 J. Korean Nucl. Soc. 7 3
Related articles from Frontiers Journals
[1] Vural E. Kafadar, Metin Bedir, A. Necmeddin Yazıcı, Tülin Günal . The Analysis of Main Dosimetric Glow Peaks in CaF2:Tm (TLD-300)[J]. Chin. Phys. Lett., 2013, 30(5): 017801
[2] Yasser Saleh Mustafa Alajerami, Suhairul Hashim, Ahmad Termizi Ramli, Muneer Aziz Saleh, Ahmad Bazlie Bin Abdul Kadir, Mohd. Iqbal Saripan. Dosimetric Characteristics of a LKB:Cu,Mg Solid Thermoluminescence Detector[J]. Chin. Phys. Lett., 2013, 30(1): 017801
[3] Hüseyin Toktamiş, and A. Necmeddin Yazici. Effects of Annealing on Thermoluminescence Peak Positions and Trap Depths of Synthetic and Natural Quartz by Means of the Various Heating Rate Method[J]. Chin. Phys. Lett., 2012, 29(8): 017801
[4] H. Wagiran, I. Hossain, D. Bradley, A. N. H. Yaakob, T. Ramli. Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO2 Optical Fibres[J]. Chin. Phys. Lett., 2012, 29(2): 017801
[5] ZHANG Ming-Jian, LIU Fu-Sheng, TIAN Chun-Ling, SUN Yan-Yun. Multi-Shock Compression of Dense Hydrogen--Helium Mixture Beyond 100GPa[J]. Chin. Phys. Lett., 2006, 23(8): 017801
[6] Metin Bedir, Mustafa Ö, ztas, A. Necmeddin Yazici, E. Vural Kafadar. Characterization of Undoped and Cu-Doped ZnO Thin Films Deposited on Glass Substrates by Spray Pyrolysis[J]. Chin. Phys. Lett., 2006, 23(4): 017801
[7] KUANG Jin-Yong, LIU Ying-Liang. Trapping Effects in CdSiO3:In3+ Long Afterglow Phosphor[J]. Chin. Phys. Lett., 2006, 23(1): 017801
[8] Vijay Singh, ZHU Jun-Jie, T. K. Gundu Rao, Manoj Tiwari, PAN Hong-Cheng. Luminescence and ESR Studies of CaS:Dy Phosphor[J]. Chin. Phys. Lett., 2005, 22(12): 017801
[9] LIU Bo, SHI Chao-Shu, TAO Ye, XIAO Zhi-Guo. Luminescence Kinetic Model for Long-Afterglow Phosphor (Sr0.5Ca1.5)MgSi2O7:Eu2+,Dy3+[J]. Chin. Phys. Lett., 2005, 22(5): 017801
Full text