Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 017301    DOI: 10.1088/0256-307X/34/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode
Lai Wang1**, Xiao Meng1, Jung-Hoon Song2, Tae-Soo Kim2, Seung-Young Lim2, Zhi-Biao Hao1, Yi Luo1, Chang-Zheng Sun1, Yan-Jun Han1, Bing Xiong1, Jian Wang1, Hong-Tao Li1
1Tsinghua National Laboratory on Information Science and Technology, and Department of Electronic Engineering, Tsinghua University, Beijing 100084
2Department of Physics, Kongju National University, Kongju 314701, South Korea
Cite this article:   
Lai Wang, Xiao Meng, Jung-Hoon Song et al  2017 Chin. Phys. Lett. 34 017301
Download: PDF(379KB)   PDF(mobile)(372KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency–current and carrier lifetime–current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is $1.0\times10^{-31}$ cm$^{6}$s$^{-1}$ in the present sample, which contributes slightly to efficiency droop effect.
Received: 08 October 2016      Published: 29 December 2016
PACS:  73.21.Fg (Quantum wells)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.60.Fi (Electroluminescence)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400102, the National Basic Research Program of China under Grant Nos 2012CB3155605, 2013CB632804, 2014CB340002 and 2015CB351900, the National Natural Science Foundation of China under Grant Nos 61574082, 61210014, 61321004, 61307024, and 51561165012, the High-Technology Research and Development Program of China under Grant No 2015AA017101, the Tsinghua University Initiative Scientific Research Program under Grant Nos 2013023Z09N and 2015THZ02-3, the Open Fund of the State Key Laboratory on Integrated Optoelectronics under Grant No IOSKL2015KF10, the CAEP Microsystem and THz Science and Technology Foundation under Grant No CAEPMT201505, the Science Challenge Project under Grant No JCKY2016212A503, and the Guangdong Province Science and Technology Program under Grant No 2014B010121004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/017301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/017301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lai Wang
Xiao Meng
Jung-Hoon Song
Tae-Soo Kim
Seung-Young Lim
Zhi-Biao Hao
Yi Luo
Chang-Zheng Sun
Yan-Jun Han
Bing Xiong
Jian Wang
Hong-Tao Li
[1]Schubert E F 2003 Light-Emitting Diodes (New York: Cambridge University Press) p 39
[2]Iveland J, Martinelli L, Peretti J, Speck J S and Weisbuch C 2013 Phys. Rev. Lett. 110 177406
[3]Piprek J 2010 Phys. Status Solidi A 207 2217
[4]Hader J, Moloney J V, Pasenow B, Koch S W, Sabathil M, Linder N and Lutgen S 2008 Appl. Phys. Lett. 92 261103
[5]Bertazzi F, Goano M and Bellotti E 2010 Appl. Phys. Lett. 97 231118
[6]Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G and Zanoni E 2013 J. Appl. Phys. 114 071101
[7]Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[8]Delaney K T, Rinke P and van de Walle C G 2009 Appl. Phys. Lett. 94 191109
[9]Kioupakis E, Rinke P, Delaney K T and van de Walle C G 2011 Appl. Phys. Lett. 98 161107
[10]Liu Z, Wei T, Guo E, Yi X, Wang L, Wang J, Wang G, Shi Y, Ferguson I and Li J 2011 Appl. Phys. Lett. 99 091104
[11]David A and Grundmann M J 2010 Appl. Phys. Lett. 96 103504
[12]Zhang M, Bhattacharya P, Singh J and Hinckley J 2009 Appl. Phys. Lett. 95 201108
[13]Laubsch A, Sabathil M, Baur J, Peter M and Hahn B 2010 IEEE Trans. Electron Devices 57 79
[14]Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[15]Dai Q Shan Q Wang J Chhajed S Cho J Schubert E F, Crawford M H, Koleske D D, Kim M H and Park Y 2010 Appl. Phys. Lett. 97 133507
[16]Meng X, Wang L, Hao Z, Sun C, Han Y, Xiong B, Wang J and Li H 2016 Appl. Phys. Lett. 108 013501
[17]Oh N C, Lee J G, Dong Y, Kim T S, Yu H J and Song J H 2015 Curr. Appl. Phys. 15 S7
[18]Wang J, Wang L, Wang L, Hao Z, Luo Y, Dempewolf A, Müller M, Bertram F and Christen J 2012 J. Appl. Phys. 112 023107
Related articles from Frontiers Journals
[1] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 017301
[2] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 017301
[3] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 017301
[4] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 017301
[5] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 017301
[6] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 017301
[7] Shaffa Almansour, Hassen Dakhlaoui, Emane Algrafy. Effect of Si $\delta$-Doping on the Linear and Nonlinear Optical Absorptions and Refractive Index Changes in InAlN/GaN Single Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(02): 017301
[8] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 017301
[9] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 017301
[10] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 017301
[11] GAO Han-Chao, YIN Zhi-Jun. Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure[J]. Chin. Phys. Lett., 2015, 32(06): 017301
[12] Emine Ozturk, Ismail Sokmen. Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field[J]. Chin. Phys. Lett., 2014, 31(12): 017301
[13] CHEN Jian, XU Huai-Zhe. Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes[J]. Chin. Phys. Lett., 2014, 31(03): 017301
[14] WANG Gang, YE Hui-Qi, SHI Zhen-Wu, WANG Wen-Xin, MARIE Xavier, BALOCCHI Andrea, AMAND Thierry, LIU Bao-Li. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(9): 017301
[15] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 017301
Viewed
Full text


Abstract