Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 096102    DOI: 10.1088/0256-307X/33/9/096102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation
Dong Wang1,2, Ning Gao1**, W. Setyawan3, R. J. Kurtz3, Zhi-Guang Wang1**, Xing Gao1, Wen-Hao He1,2, Li-Long Pang1
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2University of Chinese Academy of Sciences, Beijing 100049
3Pacific Northwest National Laboratory, Richland 99352, USA
Cite this article:   
Dong Wang, Ning Gao, W. Setyawan et al  2016 Chin. Phys. Lett. 33 096102
Download: PDF(969KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of strain field on defect formation energy and threshold displacement energy ($E_{\rm d})$ in body-centered cubic tungsten (W) is studied with molecular dynamics simulation. Two different W potentials (Fikar and Juslin) are compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affect the threshold displacement energy and its direction-specific values. The minimum $E_{\rm d}$ direction calculated with the Fikar potential is $\langle100\rangle$ and with the Juslin potential is $\langle111\rangle$. Nevertheless, the most stable self-interstitial configuration is found to be a $\langle111\rangle$-crowdion for both the potentials. This stable configuration does not change with the applied strain. Varying the strain from compression to tension increases the vacancy formation energy while decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that $E_{\rm d}$ decreases with the applied hydrostatic strain from compression to tension.
Received: 28 April 2016      Published: 30 September 2016
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.80.-x (Physical radiation effects, radiation damage)  
  28.52.Fa (Materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/096102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/096102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong Wang
Ning Gao
W. Setyawan
R. J. Kurtz
Zhi-Guang Wang
Xing Gao
Wen-Hao He
Li-Long Pang
[1]Pintsuk G 2012 Tungsten as a Plasma-Facing Material in Comprehensive Nuclear Material (Amsterdam: Elsevier) vol 4 chap 17 p 551
[2]Gao F, Bacon D J, Flewitt P E and Lewis T A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 180 187
[3]Beeler B, Asta M, Hosenmann P and Gronbech-Jensen N 2015 J. Nucl. Mater. 459 159
[4]Miyashiro S, Fujita S and Okita T 2011 J. Nucl. Mater. 415 1
[5]Di S, Yao Z, Daymond M R and Gao F 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 95
[6]Was G S 2007 Fundamentals Radiat. Mater. Sci. (Berlin Heidelberg: Springer) part I chap 2 p 73
[7]Nordlund K, Wallenius J and Malerba L 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 246 322
[8]Norgett M I, Robinson M T and Torrens I M 1975 Nucl. Eng. Des. 33 50
[9]ASTM Standard 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation E521
[10]Stuart R N, Guinan M W and Borg R J 1976 Radiat. Eff. 30 129
[11]Maury F, Biget M, Vajda P, Lucasson A and Lucasson P 1978 Radiat. Eff. 38 53
[12]Xu Q, Yoshiie T and Huang H C 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 123
[13]Erginsoy C, Vineyard G H and Englert A 1964 Phys. Rev. 133 A595
[14]Kenik E A and Mitchell T E 1975 Philos. Mag. 32 815
[15]Bacon D J, Calder A F, Harder J M and Wooding S J 1993 J. Nucl. Mater. 205 52
[16]Calder A F and Bacon D J 1994 Radiat. Eff. 129 65
[17]Juslin N and Wirth B D 2013 J. Nucl. Mater. 432 61
[18]Fikar J and Schaublin R 2009 J. Nucl. Mater. 386 97
[19]Bjorkas C and Nordlund K 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 259 853
[20]Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D and Kurtz R J 2015 J. Phys.: Condens. Matter 27 225402
[21]Ackland G J and Thetford R 1987 Philos. Mag. A 56 15
[22]Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon)
[23]Nguyen-Mahn D, Horsfield A P and Dudarev S L 2006 Phys. Rev. B 73 020101(R)
[24]Derlet P M, Nguyen-Manh D and Dudarev S L 2007 Phys. Rev. B 76 054107
[25]Plimpton S 1995 J. Comput. Phys. 117 1
[26]Honeycutt J D and Anderson H C 1987 J. Phys. Chem. 91 4950
[27]Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021
[28]Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[29]Kato D, Iwakiri H and Morishita K 2011 J. Nucl. Mater. 417 1115
[30]Peng Q, Zhang X and Lu G 2010 Modell. Simul. Mater. Sci. Eng. 18 055009
[31]Chen Z Z, Kioussis N, Ghoniem N and Seif D 2010 Phys. Rev. B 81 094102
[32]Jan R V and Seeger A 1963 Phys. Status Solidi 3 465
[33]Sand A E, Dequeker J, Becquart C S, Domain C and Nordlund K 2016 J. Nucl. Mater. 470 119
Related articles from Frontiers Journals
[1] Jian-Qiang Huang, Wei-Wei He, Jing Chen, Jie-Xin Luo, Kai Lu, Zhan Chai. New Method of Total Ionizing Dose Compact Modeling in Partially Depleted Silicon-on-Insulator MOSFETs[J]. Chin. Phys. Lett., 2016, 33(09): 096102
[2] WAN Chu-Bin, ZHOU Xiao-Song, LI Shi-Na, ZHANG Hui-Jun, LIANG Jian-Hua, PENG Shu-Ming, JU Xin. Trapping Behavior of He in Ti Revisited by ab initio Calculations[J]. Chin. Phys. Lett., 2014, 31(1): 096102
[3] LI Yu-Hong, **, XU Chun-Ping, GAO Chao, WANG Zhi-Guang . Ne2+ Ion Irradiation Induced Swelling Effects in Pyrochlore Ho2Ti2O7 by Using a GIXRD Technique[J]. Chin. Phys. Lett., 2011, 28(6): 096102
[4] LIU Feng, WANG Yu-Gang, XUE Jian-Ming, WANG Si-Xue, DU Guang-Hua, YAN Sha, ZHAO Wei-Jiang. Mechanism of Long-Range Penetration of Low-Energy Ions in Botanic Samples[J]. Chin. Phys. Lett., 2002, 19(3): 096102
Viewed
Full text


Abstract