Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 094201    DOI: 10.1088/0256-307X/33/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Silicon-on-Insulator-Based Broadband 1$\times$3 Adiabatic Splitter with Simultaneous Tapering of Velocity and Coupling
Yuan-Hao Gong, Zhi-Yong Li, Jin-Zhong Yu, Yu-De Yu**
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Yuan-Hao Gong, Zhi-Yong Li, Jin-Zhong Yu et al  2016 Chin. Phys. Lett. 33 094201
Download: PDF(704KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and experimentally demonstrate a broadband $1\times3$ adiabatic splitter based on the silicon-on-insulator technology, with simultaneous tapering of velocity and coupling. The designed structure becomes simulated transmission uniformity of three outputs better than 0.5 dB in a broadband of 250 nm, and a large simulated fabrication tolerance is obtained. A manufactured splitter whose parameters greatly diverge from the design acquires a measured result of the worst splitting ratio better than 1.5 dB as well as an excess loss lower than 0.8 dB in a large wavelength range of 80 nm. A post-simulation based on the tested splitter obtains a result that meets the actual transmission well.
Received: 06 May 2016      Published: 30 September 2016
PACS:  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  42.82.Ds (Interconnects, including holographic interconnects)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/094201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Hao Gong
Zhi-Yong Li
Jin-Zhong Yu
Yu-De Yu
[1]Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678
[2]Chen B, Huang L, Li Y D, Liu C L and Liu G Z 2012 Chin. Opt. Lett. 10 111301
[3]Zhao Y Z, Zhang Y and Li B J 2005 Chin. Opt. Lett. 3 S196
[4]Fan Z K, Li S G, Fan Y Q, Zhang W, An G W and Bao Y J 2014 Chin. Phys. B 23 094212
[5]Chen X Y, Qiang Z X, Zhao D Y, Wang Y F, Li H, Qiu Y S and Zhou W D 2012 Chin. Phys. Lett. 29 014210
[6]Zhang X, Chen S Y, Liao Q H, Tianbao Y U, Liu N H and Huang Y Z 2011 Chin. Phys. Lett. 28 084201
[7]Hosseini A, Kwong D N, Zhang Y, Subbaraman H, Xu X C and Chen R T 2011 IEEE J. Sel. Top. Quantum Electron. 17 510
[8]Sun Y L, Jiang X Q, Yang J Y, Tang Y and Wang M H 2003 Chin. Phys. Lett. 20 2182
[9]Wan Y, Yun M J, Xia L H and Zhao X S 2011 Optik 122 337
[10]Zhang M, Malureanu R, Krüger A C and Kristensen M 2010 Opt. Express 18 14944
[11]Yang J B, Xu S Z, Zhou K and Xu J 2014 Chin. Opt. Lett. 12 310501
[12]Xing J J, Xiong K, Xu H, Li Z Y, Xiao X, Yu J Z and Yu Y D 2013 Opt. Lett. 38 2221
[13]Yariv A 1973 IEEE J. Quantum Electron. 9 919
[14]Greenberg M and Orenstein M 2005 Opt. Express 13 9381
Related articles from Frontiers Journals
[1] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 094201
[2] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 094201
[3] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 094201
[4] CUI Xiao, ZHANG Can, LIANG Song, ZHU Hong-Liang, HOU Lian-Ping. Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits[J]. Chin. Phys. Lett., 2014, 31(04): 094201
[5] LIU Wei-Hua, ZHAO Yan-Li, XU Cheng-Zhi, ZHAO Jian-Yi, LIU Wen, XU Yuan-Zhong. Optical 90° Hybrid Based on an InP 4×4 Multimode Interference Coupler for Coherent Receiver Application[J]. Chin. Phys. Lett., 2012, 29(6): 094201
[6] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 094201
[7] CHEN Xi**, FAN Zhong-Chao, ZHANG Jing, SONG Guo-Feng, CHEN Liang-Hui. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection[J]. Chin. Phys. Lett., 2010, 27(12): 094201
[8] YANG Zhi-Feng, WU Ai-Min, FANG Na, JIANG Xun-Ya, LIN Xu-Lin, WANG Xi, ZOU Shi-Chang. Self-Collimation in Planar Photonic Crystals Fabricated by CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(2): 094201
[9] WANG Chun-Xia, XU Xing-Sheng, XIONG Gui-Guang, HU Hai-Yang, SONG Qian, DU Wei, CHEN Hong-Da. Structure Tuning of Line-Defect Waveguides Based on Silicon-on-Insulator Photonic Crystal Slabs[J]. Chin. Phys. Lett., 2007, 24(3): 094201
[10] ZHANG Liang, LI Jing, LI Cheng-Fang, ZHANG Fei, SHI Li-Na. A Novel Nano-Grating Structure of Polarizing Beam Splitters[J]. Chin. Phys. Lett., 2006, 23(7): 094201
[11] LOU Shu-Qin, FANG Hong, GUO Tie-Ying, JIAN Shui-Sheng. Investigation on the Fabrication of Photonic Crystal Fibre[J]. Chin. Phys. Lett., 2006, 23(4): 094201
[12] JIN Guo-Liang, SHAO Gong-Wang, Mu Huan, HU Li-Li, LI Qu. Gain and Noise Figure of a Double-Pass Waveguide Amplifier Based on Er/Yb-Doped Phosphate Glass[J]. Chin. Phys. Lett., 2005, 22(11): 094201
[13] XIONG Jun, HUANG Feng, CAO De-Zhong, LI Hong-Guo, SUN Xu-Juan, WANG Kai-Ge. Super-Resolution of Interference Pattern with Independent Laser Beams[J]. Chin. Phys. Lett., 2005, 22(11): 094201
[14] ZHANG Xi-Zhen, WANG Fei, ZHANG Hai-Ming, ZHANG Da-Ming, SUN Wei. Fabrication of 32×32 Arrayed Waveguide Grating Using Fluorinated Polymers[J]. Chin. Phys. Lett., 2005, 22(8): 094201
[15] YANG Di, LI Yan-Ping, CHEN Shao-Wu, YU Jin-Zhong. A 4×4 Strictly Nonblocking Silicon-on-Insulator Thermo-Optic Switch Matrix[J]. Chin. Phys. Lett., 2005, 22(6): 094201
Viewed
Full text


Abstract