Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 088502    DOI: 10.1088/0256-307X/33/8/088502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Superconducting Nanowire Single Photon Detector with Optical Cavity
Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen**
Tsinghua National Laboratory for Information Science and Technology, Department of Microelectronics and Nanoelectronics, Institute of Microelectronics, Tsinghua University, Beijing 100084
Cite this article:   
Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang et al  2016 Chin. Phys. Lett. 33 088502
Download: PDF(809KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Increasing the detection efficiency (DE) is a hot issue in the development of the superconducting nanowire single photon detector (SNSPD). In this work, a cavity-integrated structure coupled to the SNSPD is used to enhance the light absorption of nanowire. Ultra-thin Nb films are successfully prepared by magnetron sputtering, which are used to fabricate Nb/Al SNSPD with the curve of 100 nm and the square area of $4\times4$ μm$^2$ by sputtering and the lift-off method. To characterize the optical and electrical performance of the cavity-integrated SNSPD, a reliable cryogenic research system is built up based on a He$^{3}$ system. To satisfy the need of light coupling, a packaging structure with collimator is conducted. Both DE and the dark count rates increase with $I_{\rm b}$. It is also found that the DE of SNSPD with cavities can be up to 0.17% at the temperature of 0.7 K under the infrared light of 1550 nm, which is obviously higher than that of the SNSPD directly fabricated upon silicon without any cavity structure.
Received: 22 April 2016      Published: 31 August 2016
PACS:  85.25.Qc (Superconducting surface acoustic wave devices and other superconducting devices)  
  85.25.-j (Superconducting devices)  
  74.78.-w (Superconducting films and low-dimensional structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/088502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/088502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Liu
Li-Qun Zhang
Zhen-Nan Jiang
Kamal Ahmad
Jian-She Liu
Wei Chen
[1]Renema J J, Wang Q, Gaudio R, Komen I, Hoog K, Sahin D, Schilling A, Exter P, Fiore A, Engel A and Dood M J 2015 Nano Lett. 15 4541
[2]Dauler E A, Grein M E, Kerman A J, Marsili F, Miki S, Nam S W, Shaw M, Terai H, Verma V B and Yamashita T 2014 Opt. Eng. 53 081907
[3]Ortlepp T, Hofherr M, Fritzsch L, Engert S, Iiin K, Rall D, Toepfer H, Meyer H G and Siegel M 2011 Opt. Express 19 18593
[4]Rosenberg D, Kerman A, Molnar R J and Dauler E A 2013 Opt. Express 21 1440
[5]Shibata H, Shimizu K, Takesue H and Tokura Y 2015 Opt. Lett. 40 3428
[6]Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G and Wu P 2011 Appl. Phys. B 102 867
[7]Dorenbos S, Reiger E, Perinetti U, Zwiller V, Zijlstra T and Klapwijk T T 2008 Appl. Phys. Lett. 93 131101
[8]Hadfield R H 2009 Nat. Photon. 3 696
[9]Devoret M H and Schoelkopf R J 2013 Science 339 1169
[10]Marsili F, Verma V, Stern J A, Hrrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photon. 7 210
[11]Natarajan C M, Tanner M G and Hadfield R H 2012 Supercond. Sci. Technol. 25 063001
[12]Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamato Y 2007 Nat. Photon. 1 343
[13]Cabello A, Rossi A, Vallone G, Martini F and Mataloni P 2009 Phys. Rev. Lett. 102 040401
[14]Salim A J, Eftekharian A and Majedi A H 2014 J. Appl. Phys. 115 054514
[15]Bachar G, Baskin I, Shtempluck O and Buks E 2012 Appl. Phys. Lett. 101 262601
[16]Jiang Z N 2015 Master Thesis (Beijing: Tsinghua University) (in Chinese)
Viewed
Full text


Abstract