Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 087301    DOI: 10.1088/0256-307X/33/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Contribution of Surface Defects to the Interface Conductivity of SrTiO$_{3}$/LaAlO$_{3}$
Li Guan1,2, Feng-Xue Tan1, Guo-Qi Jia1,2, Guang-Ming Shen1, Bao-Ting Liu1, Xu Li1,2**
1College of Physical Science and Technology, Hebei University, Baoding 071002
2Hebei Provincial Key Laboratory of Optic-Electronic Information Materials, Hebei University, Baoding 071002
Cite this article:   
Li Guan, Feng-Xue Tan, Guo-Qi Jia et al  2016 Chin. Phys. Lett. 33 087301
Download: PDF(789KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the first-principles method, the structural stability and the contribution of point defects such as O, Sr or Ti vacancies on two-dimensional electron gas of n- and p-type LaAlO$_{3}$/SrTiO$_{3}$ interfaces are investigated. The results show that O vacancies at p-type interfaces have much lower formation energies, and Sr or Ti vacancies at n-type interfaces are more stable than the ones at p-type interfaces under O-rich conditions. The calculated densities of states indicate that O vacancies act as donors and give a significant compensation to hole carriers, resulting in insulating behavior at p-type interfaces. In contrast, Sr or Ti vacancies tend to trap electrons and behave as acceptors. Sr vacancies are the most stable defects at high oxygen partial pressures, and the Sr vacancies rather than Ti vacancies are responsible for the insulator-metal transition of n-type interface. The calculated results can be helpful to understand the tuned electronic properties of LaAlO$_{3}$/SrTiO$_{3}$ heterointerfaces.
Received: 06 April 2016      Published: 31 August 2016
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/087301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/087301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Guan
Feng-Xue Tan
Guo-Qi Jia
Guang-Ming Shen
Bao-Ting Liu
Xu Li
[1]Ohtomo A and Hwang H Y 2004 Nature 427 423
[2]Bristowe N C, Ghosez P, Littlewood P B and Artacho E 2014 J. Phys.: Condens. Matter 26 143201
[3]Xie Y W and Hwang H Y 2013 Chin. Phys. B 22 127301
[4]Gu M Q, Wang J L, Wu X S and Zhang G P 2012 J. Phys. Chem. C 116 24993
[5]Kalabukhov A, Gunnarsson R, B?rjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
[6]Liu Z Q, Sun L, Huang Z, Li C J, Zeng S W, Han K, Lü W M, Venkatesan T and Ariando 2014 J. Appl. Phys. 115 054303
[7]Gunkel F, Brinks P, Hoffmann-Eifert S, Dittmann R, Huijben M, Kleibeuker J E, Koster G, Rijnders G and Waser R 2012 Appl. Phys. Lett. 100 052103
[8]Herranz G, Basleti? M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzi? A, Broto J M, Barthélémy A and Fert A 2007 Phys. Rev. Lett. 98 216803
[9]Cantoni C, Gazquez J, Granozio F M, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, Scotti di Uccio U, Perna P and Maccariello D 2012 Adv. Mater. 24 3952
[10]Gunkel F, Wicklein S, Hoffmann-Eifert S, Meuffels P, Brinks P and Huijben M 2015 Nanoscale 7 1013
[11]Keeble D J, Wicklein S, Dittmann R, Ravelli L, Mackie R A and Egger W 2010 Phys. Rev. Lett. 105 226102
[12]Liu G Z, Lei Q Y and Xi X X 2012 Appl. Phys. Lett. 100 202902
[13]Zhang L X, Zhou X F, Wang H F, Xu J J, Li J B, Wang E G and Wei S H 2010 Phys. Rev. B 82 125412
[14]Lechermann F, Boehnke L, Grieger D and Piefke C 2014 Phys. Rev. B 90 085125
[15]Zhou J, Asmara T C, Yang M, Sawatzky G A, Feng Y P and Rusydi A 2015 Phys. Rev. B 92 125423
[16]Yu L P and Zunger A 2014 Nat. Commun. 5 5118
[17]Yamamoto T and Mizoguchi T 2014 Appl. Phys. Lett. 105 201604
[18]Feng X, Zhao K, Xiao L Z, Zhan H L, Xiang W F and Lu Z Q 2015 AIP Adv. 5 067155
[19]Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[20]Nakagawara O, Kobayashi M, Yoshino Y, Katayama Y, Tabata H and Kawai T 1995 J. Appl. Phys. 78 7226
[21]Hayward S A, Morrison F D, Redfern S A T, Salje E K H, Scott J F, Knight K S, Tarantino S, Glazer A M, Shuvaeva V and Daniel P 2005 Phys. Rev. B 72 054110
[22]Nazir S, Behtash M and Yang K 2014 Appl. Phys. Lett. 105 141602
[23]Chen H H 2012 A First Principles Study Oxide Interfaces (Yale: Yale University) p 52
[24]Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y and Yamamoto T 2011 Appl. Phys. Lett. 99 033110
[25]Guan L, Li M J, Li X, Feng L H, Teng F, Liu B T, Wei Z R and Musgrave C B 2015 Comput. Mater. Sci. 96 223
[26]Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 087301
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 087301
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 087301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 087301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 087301
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 087301
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087301
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 087301
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 087301
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 087301
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 087301
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 087301
Viewed
Full text


Abstract