Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 086601    DOI: 10.1088/0256-307X/33/8/086601
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Porosity Evaluation and the Power Spectral Densities Analyses of Carbon–Nickel Composite Films Annealed at Different Temperatures
V. Dalouji1**, S. M. Elahi2, A. Ghaderi3, S. Solaymani3
1Department of Physics, Malayer University, Malayer, Iran
2Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Cite this article:   
V. Dalouji, S. M. Elahi, A. Ghaderi et al  2016 Chin. Phys. Lett. 33 086601
Download: PDF(1096KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The densification and the fractal dimensions of carbon–nickel films annealed at different temperatures 300, 500, 800, and 1000$^{\circ}\!$C with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, $T < 500^{\circ}\!$C, 500$^{\circ}\!$C$\, < T < 800^{\circ}\!$C and $T>800^{\circ}\!$C. The Rutherford backscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at $T < 500^{\circ}\!$C and $T>800^{\circ}\!$C is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500$^{\circ}\!$C$\, < T < 800^{\circ}\!$C strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon–nickel films annealed from 300 to 500$^{\circ}\!$C are increased, while from 500 to 1000$^{\circ}\!$C these characteristics are decreased. It can be seen that at 800$^{\circ}\!$C, films have maximum values of porosity and roughness.
Received: 20 April 2016      Published: 31 August 2016
PACS:  66.70.Df (Metals, alloys, and semiconductors)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/086601       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/086601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
V. Dalouji
S. M. Elahi
A. Ghaderi
S. Solaymani
[1]??lu ?, Stach S, Raoufi D and Hosseinpanahi F 2015 Electron. Mater. Lett. 11 749
[2]??lu ?, Bramowicz M, Kulesza S, Solaymani S, Ghaderi A, Dejam L, Boochani A and Elahi S M 2016 Superlattices Microstruct. 93 109
[3]??lu ?, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A and Ahmadirad M 2016 Ind. Eng. Chem. Res. 35 158
[4]??lu ?, Solaymani S, Bramowicz M, Naseri N, Kulesza S and Ghaderi A 2016 RSC Adv. 6 27228
[5]Talu S, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F and Solaymani S 2015 Ind. Eng. Chem. Res. 54 8212
[6]Valedbagi S, Jalilian J, Elahi S M, Majidi S, Fathalian A and Dalouji V 2014 Electron. Mater. Lett. 10 5
[7]JiMin W U and ZiJian L I 2013 Chin. Sci. Bull. 58 4515
[8]Mahdavi S, Jalali M and Afkhami A 2012 J. Nanopart. Res. 14 846
[9]Mahdavi S, Jalali M and Afkhami A 2013 Chem. Eng. Commun. 200 448
[10]Mahdavi S 2016 Clean Technol. Environ. Policy 18 81
[11]Pauleau Y, Thièry F, Uglov V V, Kuleshov A K, Dub S N and Samtsov M P 2003 Rev. Adv. Mater. Sci. 4 139
[12]??lu ?, Stach S, Ghodselahi T, Ghaderi A, Solaymani S, Boochani A and Garczyk ? 2015 J. Phys. Chem. B 119 5662
[13]Huang Q, Tian S, Zeng D, Wang X, Song W, Li Y, Xiao W and Xie C 2013 ACS Catal. 3 1477
[14]Solaymani S, Elahi S M, Beryani Nezafat N, Zahrabi H, Boochani A and Naseri M 2013 Eur. Phys. J. Appl. Phys. 64 11301
[15]Hong W, Bai H, Xu Y, Yao Z, Gu Z and Shi G 2010 J. Phys. Chem. C 114 1822
[16]Roro K T, Tile N and Forbes A 2012 Appl. Surf. Sci. 258 7174
[17]Liu Z, Li J, Ya J, Xin Y and Jin Z 2008 Mater. Lett. 62 1190
[18]Patil S, Hameed B H, Sever ? A and Lavren?i? ? U 2011 Chem. Eng. J. 174 190
[19]Green D J, Fleig P F and Hietala S L 1998 Thin Solid Films 332 257
[20]Yoldas B E 1980 Appl. Opt. 19 1425
[21]Born M and Wolf E 1987 Principles of Optics (Oxford: Pergamon Press)
[22]Diaz-Parralejo A, Caruso R, Ortiz A L and Guiberteau F 2004 Thin Solid Films 458 92
[23]Jeng Y R, Tsai P C and Fang T H 2003 Microelectron. Eng. 65 406
[24]Pfeifer P, Wu Y J, Cole M W and Krim J 1989 Phys. Rev. Lett. 62 1997
[25]Fang T H, Jian S R and Chun D S 2003 J. Phys. D: Appl. Phys. 36 878
[26]Dalouji V and Elahi S M 2015 J. Fusion Energy 34 646
[27]Dalouji V, Elahi S M and SaadiAlecasir M 2015 Phys. Scr. 90 115802
[28]Dalouji V and Elahi S M 2014 J. Korean Phys. Soc. 64 857
[29]Dalouji V and Elahi S M 2016 Surf. Rev. Lett. 23 1650002
[30]Dalouji V, Elahi S M, Solaymani S and Ghaderi A 2016 Eur. Phys. J. Plus 131 84
[31]Elahi S M, Dalouji V and Valedbagi S 2013 Adv. Mater. Sci. Eng. 2013 506549
[32]Elahi S M, Dalouji V, Mehrparvar D and Valedbagi S 2013 Mol. Cryst. Liq. Cryst. 587 105
[33]Dalouji V, Elahi S M, Solaymani S, Ghaderi A and Elahi H 2016 Appl. Phys. A 122 541
[34]Dalouji V, Elahi S M, Ghaderi A and Solaymani S 2016 Chin. Phys. Lett. 33 057203
[35]Wasa K, Kitabatake M and Adachi H 2004 Thin Film Materials Technology: Sputtering of Compound Material (London: Elsevier Science)
[36]Barmouz M and Besharati Givi M K 2011 Composites Part. A 42 1445
[37]Ye Q, Liu P Y, Tang Z F et al 2007 Vacuum 81 627
[38]Meeten G H 1986 Refraction and Extinction of Polymers, in Optical Properties of Polymers (London: Elsevier Applied Science)
[39]Ghodselahi T, Vesaghi M A, Shafiekhani A et al 2008 Surf. Coat. Technol. 202 2731
[40]Bennett J M and Mattson L 1999 Introduction to Surface Roughness and Scattering 2nd edn (Washington, DC: Optical Society of America)
[41]Raoufi D 2010 Physica B 405 451
[42]Czaja P, Maziarz W, Przewo?nik J, ?ywczak A, Ozga P, Bramowicz M, Kulesza S and Dutkiewicz J 2014 Intermetallics 55 1
[43]Bramowicz M, Kulesza S, Czaja P and Maziarz W 2014 Arch. Metall. Mater. 59 451
Related articles from Frontiers Journals
[1] Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo, and Jun-You Yang. Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials[J]. Chin. Phys. Lett., 2021, 38(9): 086601
[2] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 086601
[3] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 086601
[4] V. Dalouji, S. M. Elahi, A. Ghaderi, S. Solaymani. Influence of Annealing Temperature on Berthelot-Type Hopping Conduction Mechanism in Carbon-Nickel Composite Films[J]. Chin. Phys. Lett., 2016, 33(05): 086601
[5] LUO Jie-Xin, CHEN Jing, CHAI Zhan, L Kai, HE Wei-Wei, YANG Yan, WANG Xi. The Impact of Shallow-Trench-Isolation Mechanical Stress on the Hysteresis Effect of Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effects[J]. Chin. Phys. Lett., 2014, 31(12): 086601
[6] XUE Sheng-Jie, FANG Liang, LONG Xing-Ming, LU Yi, WU Fang, LI Wan-Jun, ZUO Jia-Qi, ZHANG Shu-Fang. Influence of ITO, Graphene Thickness and Electrodes Buried Depth on LED Thermal-Electrical Characteristics Using Numerical Simulation[J]. Chin. Phys. Lett., 2014, 31(2): 086601
Viewed
Full text


Abstract