Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 080303    DOI: 10.1088/0256-307X/33/8/080303
GENERAL |
A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices
Bei-Bing Huang**
Department of Physics, Yancheng Institute of Technology, Yancheng 224051
Cite this article:   
Bei-Bing Huang 2016 Chin. Phys. Lett. 33 080303
Download: PDF(613KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The combination of spin–orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde–Ferrell (FF) superfluid. However, atom loss and heating related to SOC have impeded the successful observation of FF state until now. In this work, we propose the realization of spin-balanced FF superfluid in a honeycomb lattice without SOC and the Zeeman field. A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving. In our model the ground state is always the FF state, thus the experimental observation has no need of fine tuning. The other advantages of our scheme are its simplicity and feasibility, and thus may open a new route for observing FF superfluids.
Received: 27 March 2016      Published: 31 August 2016
PACS:  03.75.Ss (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
  67.85.-d (Ultracold gases, trapped gases)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/080303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/080303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bei-Bing Huang
[1]Casalbuoni R and Narduli G 2004 Rev. Mod. Phys. 76 263
[2]Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[3]Larkin A I and Ovchinnikov Y N 1964 Zh. Eksp. Teor. Fiz. 47 1136
[4]Loh Y L and Trivedi N 2010 Phys. Rev. Lett. 104 165302
[5]Zhang J Y et al 2012 Phys. Rev. Lett. 109 115301
[6]Cheuk L W et al 2012 Phys. Rev. Lett. 109 095302
[7]Wang P et al 2012 Phys. Rev. Lett. 109 095301
[8]Huang L et al 2016 Nat. Phys. 12 540
[9]Zheng Z et al 2013 Phys. Rev. A 87 031602
[10]Zheng Z et al 2014 Sci. Rep. 4 6535
[11]Xu Y, Qu C, Gong M and Zhang C 2014 Phys. Rev. A 89 013607
[12]Wu F, Guo G C, Zhang W and Yi W 2013 Phys. Rev. Lett. 110 110401
[13]Cao Y et al 2015 Phys. Rev. A 91 023609
[14]Qu C et al 2013 Nat. Commun. 4 2710
[15]Zhang W and Yi W 2013 Nat. Commun. 4 2711
[16]Cao Y et al 2014 Phys. Rev. Lett. 113 115302
[17]Chan C F and Gong M 2014 Phys. Rev. B 89 174501
[18]Hu H et al 2014 Phys. Rev. A 90 033624
[19]Liu X J, Hu H and Pu H 2015 Chin. Phys. B 24 050502
[20]Hu H and Liu X J 2013 New J. Phys. 15 093037
[21]Liu X J and Hu H 2013 Phys. Rev. A 87 051608
[22]Zhou X F, Guo G C, Zhang W and Yi W 2013 Phys. Rev. A 87 063606
[23]Galitski V and Spielman I B 2013 Nature 494 49
[24]Tarruell L et al 2012 Nature 483 302
[25]Zhu S L, Wang B and Duan L M 2007 Phys. Rev. Lett. 98 260402
[26]Zhang S 1990 Phys. Rev. Lett. 65 120
[27]Hou J M and Chen W 2015 Sci. Rep. 5 17571
[28]Zhao E and Paramekanti A 2006 Phys. Rev. Lett. 97 230404
[29]Robaszkiewicz S, Micnas R and Chao K A 1981 Phys. Rev. B 23 1447
[30]Struck J et al 2012 Phys. Rev. Lett. 108 225304
[31]Hemmerich A 2010 Phys. Rev. A 81 063626
[32]Zheng Z et al 2016 Phys. Rev. Lett. 116 120403
Related articles from Frontiers Journals
[1] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 080303
[2] Jing-Bo Wang, Jian-Song Pan, Xiaoling Cui, and Wei Yi. Quantum Droplets in a Mixture of Bose–Fermi Superfluids[J]. Chin. Phys. Lett., 2020, 37(7): 080303
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 080303
[4] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 080303
[5] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 080303
[6] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 080303
[7] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 080303
[8] DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li, WU Hai-Bin. All-Optical Production of Quantum Degeneracy and Molecular Bose–Einstein Condensation of 6Li[J]. Chin. Phys. Lett., 2015, 32(5): 080303
[9] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 080303
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 080303
[11] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 080303
[12] QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Dark Solitons in Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2013, 30(11): 080303
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 080303
[14] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 080303
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 080303
Viewed
Full text


Abstract