Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 080301    DOI: 10.1088/0256-307X/33/8/080301
GENERAL |
Nonlocality Distillation and Trivial Communication Complexity for High-Dimensional Systems
Yan Li, Xiang-Jun Ye, Jing-Ling Chen**
Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071
Cite this article:   
Yan Li, Xiang-Jun Ye, Jing-Ling Chen 2016 Chin. Phys. Lett. 33 080301
Download: PDF(686KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed. We study the nonlocality distillation in the 2-input $d$-output bi-partite case. Firstly, we give the one-parameter nonlocal boxes and their correlated distilling protocol. Then, we generalize the one-parameter nonlocality distillation protocol to the two-parameter case. Furthermore, we introduce a contracting protocol testifying that the 2-input $d$-output nonlocal boxes make communication complexity trivial.
Received: 18 February 2016      Published: 31 August 2016
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/080301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan Li
Xiang-Jun Ye
Jing-Ling Chen
[1]Einstein A et al 1935 Phys. Rev. 47 777
[2]Weihs G et al 1998 Phys. Rev. Lett. 81 5309
[3]Tittel W et al 1998 Phys. Rev. Lett. 81 3563
[4]Matsukevich D N et al 2008 Phys. Rev. Lett. 100 150404
[5]Colbeck R 2007 PhD Dissertation (Cambridge: University of Cambridge)
[6]Pironio S et al 2010 Nature 464 1021
[7]Barrett J et al 2005 Phys. Rev. Lett. 95 010503
[8]Acín A et al 2007 Phys. Rev. Lett. 98 230501
[9]Masanes L et al 2011 Nat. Commun. 2 238
[10]Linden N et al 2007 Phys. Rev. Lett. 99 180502
[11]Brassard G et al 2006 Phys. Rev. Lett. 96 250401
[12]Forster M et al 2009 Phys. Rev. Lett. 102 120401
[13]Barrett J 2007 Phys. Rev. A 75 032304
[14]Barrett J et al 2005 Phys. Rev. A 71 022101
[15]Brunner N and Skrzypczyk P 2009 Phys. Rev. Lett. 102 160403
[16]Hoyer P and Rashid J 2010 Phys. Rev. A 82 042118
[17]Zu C et al 2013 Phys. Rev. Lett. 111 050405
[18]Hsu L Y and Wu K S 2010 Phys. Rev. A 82 052102
[19]Ye X J et al 2012 Phys. Rev. A 86 062103
[20]Masanes L et al 2006 Phys. Rev. A 73 012112
[21]Collins D et al 2002 Phys. Rev. Lett. 88 040404
[22]Pan G Z et al 2015 Quantum Inf. Process. 14 1321
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 080301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 080301
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 080301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 080301
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 080301
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 080301
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 080301
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 080301
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 080301
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 080301
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 080301
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 080301
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 080301
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 080301
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 080301
Viewed
Full text


Abstract