Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 076101    DOI: 10.1088/0256-307X/33/7/076101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High-Pressure Preparation of High-Density Cu$_{2}$ZnSnS$_{4}$ Materials
Yi-Ming Li1,2, Li-Xia Qiu1, Zhan-Hui Ding1**, Yong-Feng Li1, Bin Yao1,2**, Zhen-Yu Xiao1, Pin-Wen Zhu1
1State Key Laboratory of Superhard Material and College of Physics, Jilin University, Changchun 130012
2Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012
Cite this article:   
Yi-Ming Li, Li-Xia Qiu, Zhan-Hui Ding et al  2016 Chin. Phys. Lett. 33 076101
Download: PDF(570KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-density Cu$_{2}$ZnSnS$_{4 }$ (CZTS) materials are prepared via the mechanical alloying and high pressure sintering method using Cu$_{2}$S, ZnS and SnS$_{2}$ as the raw materials. The morphological, structural, compositional and electrical properties of the materials are investigated by using x-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy, as well as by the Raman scattering and the Hall Effect measurements. The CZTS synthesized under 5 GPa and 800$^\circ\!$C shows a p-type conductivity, with a resistivity of $9.69\times10^{-2}$ $\Omega \cdot$cm and a carrier concentration of $1.45\times10^{20}$ cm$^{-3}$. It is contributed to by the large grains in the materials reducing the grain boundaries, thus effectively reducing the recombination of the charge carriers.
Received: 09 March 2016      Published: 01 August 2016
PACS:  61.82.Fk (Semiconductors)  
  81.40.Vw (Pressure treatment)  
  87.64.Bx (Electron, neutron and x-ray diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/076101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/076101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Ming Li
Li-Xia Qiu
Zhan-Hui Ding
Yong-Feng Li
Bin Yao
Zhen-Yu Xiao
Pin-Wen Zhu
[1]Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T and Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141
[2]Tang D, Wang Q L, Liu F Y, Zhao L B, Han Z L, Sun K W, Lai Y Q, Li J and Liu Y X 2013 Surf. Coat. Technol. 232 53
[3]Chen S Y, Gong X G, Aron W and Wei S H 2011 Physics 40 248
[4]Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K and Katagiri H 2007 Thin Solid Films 515 5997
[5]Mitzi D B, Gunawan O, Todorov T K, Wang K and Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421
[6]Abelenda A, Sánchez M, Ribeiro G M, Fernandes P A, SaloméP M P, da Cunha A F, Leit?o J P, da Silva M I N and González J C 2015 Sol. Energy Mater. Sol. Cells 137 164
[7]Tanaka K, Kato M and Uchiki H 2014 J. Alloys Compd. 616 492
[8]Wozny S, Wang K and Zhou W 2013 J. Mater. Chem. A 1 15517
[9]Li Y, Yuan T, Jiang L, Su Z and Liu F 2014 J. Alloys Compd. 610 331
[10]Tanaka T, Kawasaki D, Nishio M, Guo Q and Ogawa H 2006 Phys. Status Solidi C 3 2844
[11]Araki H, Mikaduki A, Kubo Y, Sato T, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K and Takeuchi A 2008 Thin Solid Films 517 1457
[12]He J, Sun Lin, Zhang K Z, Wang W J, Jiang J C, Chen Y, Yang P X and Chu J H 2013 Appl. Surf. Sci. 264 133
[13]Azimi H, Hou Y and Brabec C J 2014 Energy Environ. Sci. 7 1829
[14]Katagiri H 2012 The 3rd International Conference on Photonics p 345
[15]Ou K L, Fan J C, Chen J K, Huang C C, Chen L Y, Ho J H and Chang J Y 2012 J. Mater. Chem. 22 14667
[16]Todorov T and Mitzi D B 2010 Eur. J. Inorg. Chem. 2010 17
[17]Su Z H, Sun K W, Han Z L, Cui H T, Liu F Y, Lai Y Q, Li J, Hao X J, Liu Y X and Green M A 2014 J. Mater. Chem. A 2 500
[18]Traji? J, Kosti? R, Rom?evi? N, Rom?evi? M, Mitri? M, Lazovi? V, Bala? P and Stojanovi? D 2015 J. Alloys Compd. 637 401
[19]Wang C R, Tang K B, Yang Q and Qian Y T 2002 Chem. Phys. Lett. 357 371
[20]Pani B and Singh U P 2013 J. Renewable Sustainable Energy 5 053131
[21]Kala S, Kaur H, Rastogi, Singh V N and Senguttuvan T D 2016 J. Alloys Compd. 658 324
[22]Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H and Lee J Y 2011 Sol. Energy Mater. Sol. Cells 95 3202
Related articles from Frontiers Journals
[1] Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions[J]. Chin. Phys. Lett., 2022, 39(12): 076101
[2] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 076101
[3] Qing Liao, Long Kang, Tong-Min Zhang, Hui-Ping Liu, Tao Wang, Xiao-Gang Li, Jin-Yu Li, Zhen Yang, and Bing-Sheng Li. Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation[J]. Chin. Phys. Lett., 2020, 37(7): 076101
[4] Hui-Ping Liu, Jin-Yu Li, Bing-Sheng Li. Microstructure of Hydrogen-Implanted Polycrystalline $\alpha$-SiC after Annealing[J]. Chin. Phys. Lett., 2018, 35(9): 076101
[5] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 076101
[6] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 076101
[7] Yu-Zhu Liu, Bing-Sheng Li, Hua Lin, Li Zhang. Recrystallization Phase in He-Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(7): 076101
[8] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 076101
[9] Yu-Zhu Liu, Bing-Sheng Li, Li Zhang. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(5): 076101
[10] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 076101
[11] Yi Han, Bing-Sheng Li, Zhi-Guang Wang, Jin-Xin Peng, Jian-Rong Sun, Kong-Fang Wei, Cun-Feng Yao, Ning Gao, Xing Gao, Li-Long Pang, Ya-Bin Zhu, Tie-Long Shen, Hai-Long Chang, Ming-Huan Cui, Peng Luo, Yan-Bin Sheng, Hong-Peng Zhang, Xue-Song Fang, Si-Xiang Zhao, Jin Jin, Yu-Xuan Huang, Chao Liu, Dong Wang, Wen-Hao He, Tian-Yu Deng, Peng-Fei Tai, Zhi-Wei Ma. H-ion Irradiation-induced Annealing in He-ion Implanted 4H-SiC[J]. Chin. Phys. Lett., 2017, 34(1): 076101
[12] Xiao-Nian Liu, Li-Hua Dai, Bing-Xu Ning, Shi-Chang Zou. Total-Ionizing-Dose-Induced Body Current Lowering in the 130nm PDSOI I/O NMOSFETs[J]. Chin. Phys. Lett., 2017, 34(1): 076101
[13] Xin Wang, Wu Lu, Wu-Ying Ma, Qi Guo, Zhi-Kuan Wang, Cheng-Fa He, Mo-Han Liu, Xiao-Long Li, Jin-Cheng Jia. Radiation Resistance of Fluorine-Implanted PNP Using Gated-Controlled Lateral PNP Transistor Structure[J]. Chin. Phys. Lett., 2016, 33(08): 076101
[14] R. Perumal, Z. Hassan, R.Saravanan. Structural, Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 076101
[15] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 076101
Viewed
Full text


Abstract