Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 074204    DOI: 10.1088/0256-307X/33/7/074204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities
Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li**
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Yan-Li Xue, Ke Zhang, Bao-Hua Feng et al  2016 Chin. Phys. Lett. 33 074204
Download: PDF(694KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the evolution dynamics of a quantum system consisting of two two-level atoms separately embedded within two strongly coupled photonic crystal cavities. Although the quantum system is subjected to dissipation and decoherence from the cavity leakage and the atomic decay, it does allow for eigenstates that are not influenced by one of the two dissipation channels and results in dissipation-inhibition quantum states. These dissipation-free quantum states can help to achieve an extremely long photon and atom storage lifetime and provide a new perspective to realize efficient quantum information storage via reducing the negative influence of the dissipation from the environment.
Received: 25 March 2016      Published: 01 August 2016
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/074204       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/074204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Li Xue
Ke Zhang
Bao-Hua Feng
Zhi-Yuan Li
[1]Carmichael H J 1999 Statistical Methods in Quantum Optics (New York: Springer)
[2]Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[3]Chen M F and Zhang C L 2015 Chin. Phys. B 24 070310
[4]Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303
[5]Shen J T and Fan S H 2009 Phys. Rev. A 79 023837
[6]Ma?tre X, Hagley E, Nogues G, Wunderlich C, Goy P, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 769
[7]Fidio C D and Vogel W 2009 Phys. Rev. A 79 050303(R)
[8]Xiang S H, Deng X P and Song K H 2012 Chin. Phys. Lett. 29 050304
[9]Zhong Z R 2013 Chin. Phys. Lett. 30 080303
[10]Wang S S, Hu Z F, Li Y H and Tong L M 2009 Opt. Lett. 34 253
[11]Ochiai T, Inoue J and Sakoda K 2006 Phys. Rev. A 74 063818
[12]Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S and Kimble H J 1998 Phys. Rev. A 57 R2293
[13]Song B S, Noda S, Asano T and Akahane Y 2005 Nat. Mater. 4 207
[14]Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857
[15]Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature 445 896
[16]Li Z Y, Lin L L and Zhang Z Q 2000 Phys. Rev. Lett. 84 4341
[17]Li Z Y and Xia Y N 2001 Phys. Rev. A 63 043817
[18]Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
[19]Shi T, Fan S H and Sun C P 2011 Phys. Rev. A 84 063803
[20]Akahane Y, Asano T, Song B S and Noda S 2005 Opt. Express 13 1202
[21]Linington I E and Garraway B M 2008 Phys. Rev. A 77 033831
[22]Tawara T, Kamada H, Tanabe T, Sogawa T, Okamoto H, Yao P, Pathak P K and Hughes S 2010 Opt. Express 18 2719
[23]Lukyanets S P and Bevzenko D A 2006 Phys. Rev. A 74 053803
[24]Zhang K and Li Z Y 2010 Phys. Rev. A 81 033843
Related articles from Frontiers Journals
[1] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 074204
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074204
[3] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 074204
[4] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 074204
[5] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 074204
[6] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 074204
[7] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 074204
[8] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 074204
[9] Kun Zhou, Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Zhong-Hua Qian, Qi-Ming Wu, Jian Wang, Ran He, Wei-Min Lv, Chang-Kang Hu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo. An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions[J]. Chin. Phys. Lett., 2017, 34(1): 074204
[10] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 074204
[11] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 074204
[12] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 074204
[13] GUO Yan-Qing, DENG Yao, PEI Pei, TONG Dian-Min, WANG Dian-Fu, MI Dong. Quantum State Transfer among Three Ring-Connected Atoms[J]. Chin. Phys. Lett., 2015, 32(06): 074204
[14] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 074204
[15] WU Huai-Zhi, YANG Zhen-Biao. Distributed Qutrit–Qutrit Entanglement through Laser-Driven Resonant Interaction[J]. Chin. Phys. Lett., 2014, 31(2): 074204
Viewed
Full text


Abstract