Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 064202    DOI: 10.1088/0256-307X/33/6/064202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Double-Cladding Seven-Core Photonic Crystal Fiber for Hundred-Watts-Level All-Fiber-Integrated Supercontinuum Generation
Hui-Feng Wei1,4, Sheng-Ping Chen2, Jing Hou2, Kang-Kang Chen3, Jin-Yan Li1**
1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074
2College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073
3Wuhan YSL Photonics Co. Ltd, Wuhan 430073
4State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073
Cite this article:   
Hui-Feng Wei, Sheng-Ping Chen, Jing Hou et al  2016 Chin. Phys. Lett. 33 064202
Download: PDF(668KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A seven-core photonic crystal fiber (PCF) is fabricated and shown to possess a Gaussian-like far-field-intensity distribution. The seven-core PCF, designed with double-cladding structure and zero dispersion wavelength at 927 nm, is utilized to build up a 104 W all-fiber-integrated supercontinuum (SC) source with total conversion efficiency up to 74.3%. The average output power of SC can be further scaled based on this multi-core PCF.
Received: 19 January 2016      Published: 30 June 2016
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.79.Nv (Optical frequency converters)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/064202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/064202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Feng Wei
Sheng-Ping Chen
Jing Hou
Kang-Kang Chen
Jin-Yan Li
[1]Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[2]Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[3]Yan P G, Ruan S C, Lin H J, Du C L, Yu Y Q, Lu K C and Yao J Q 2004 Chin. Phys. Lett. 21 1093
[4]Yan P G, Shu J, Ruan S C, Zhao J, Zhao J Q, Du C L, Guo C Y, Wei H F and Luo J 2011 Opt. Express 19 4985
[5]Hu M L, Wang C Y and Li Y F 2006 Opt. Express 14 1942
[6]Yan P G, Dong R J, Zhang G L, Li H Q and Ruan S C 2013 Opt. Commun. 293 133
[7]Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[8]Chen K K, Price J H V, Alam S, Hayes J R, Lin D, Malinowski A and Richardson D J 2010 Opt. Express 18 14385
[9]Fang X H, Hu M L, Xie C, Song Y J, Chai L and Wang C Y 2011 Opt. Lett. 36 1005
[10]Avdokhin A V, Popov S V and Tayloret J R 2003 Opt. Lett. 28 1353
[11]Hsiung P L, Chen Y, Tony H K, James G F, Christiano J S M, Sergei V P, James R T and Valentin P G 2004 Opt. Express 12 5287
[12]Cumberland B A, Travers J C, Popov S V and Tayloret J R 2008 Opt. Express 16 5954
[13]Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435
[14]Labat D, Me' lin G, Mussot A, Fleureau A, Galkovsky L, Lempereur S and Kudlinski A 2011 IEEE Photon. J. 3 815
[15]Chen K K, Alam S, Price J H V, Hayes J R, Lin D, Malinowski A, Codemard C, Ghosh D, Pal M, Bhadra S K and Richardson D J 2010 Opt. Express 18 5426
[16]Chen H W, Chen S P, Wang J H, Chen Z L and Hou J 2011 Opt. Commun. 284 5484
[17]Hu X H, Zhang W, Yang Z, Wang Y S, Zhao W, Li X H, Wang H S, Li C and Shen D 2011 Opt. Lett. 36 2659
[18]Chen H W, Chen Z L, Chen S P, Hou J and Lu Q S 2013 Appl. Phys. Express 6 032702
[19]Xi X M, Chen Z L, Sun G L and Hou J 2011 Appl. Opt. 50 E50
[20]Zhou H, Chen Z L, Xi X M, Hou J and Chen J B 2012 Appl. Opt. 51 390
[21]Fang X H, Hu M L, Huang L L, Chai L, Dai N L, Li J Y, Tashchilina A Y, Zheltikov A M and Wang C Y 2012 Opt. Lett. 37 2292
[22]Wei H F, Chen H W, Chen S P, Yan P G, Liu T, Guo L, Lei Y, Chen Z L, Li J, Zhang X B, Zhang G L, Hou J, Tong W J, Luo J, Li J Y and Chen K K 2013 Laser Phys. Lett. 10 045101
[23]Yan P G, Zhang G L, Wei H F, Ouyang D Q, Huang S S, Zhao J Q, Chen K K, Luo J and Ruan S C 2013 J. Lightwave Technol. 31 3658
[24]Chen S P, Chen H W, Hou J and Liu Z J 2009 Opt. Express 17 24008
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 064202
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 064202
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 064202
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 064202
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 064202
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 064202
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 064202
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 064202
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 064202
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 064202
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 064202
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 064202
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 064202
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 064202
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 064202
Viewed
Full text


Abstract