Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 048101    DOI: 10.1088/0256-307X/33/4/048101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition
Ru-Dai Quan, Jin-Cheng Zhang**, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu et al  2016 Chin. Phys. Lett. 33 048101
Download: PDF(647KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Epitaxial growth of InAlGaN/GaN structures are performed on the $c$-plane sapphire by pulsed metal organic chemical vapor deposition with different triethylgallium (TEGa) flows in the growth process of InAlGaN quaternary alloys. X-ray photoelectron spectroscopy results show that the Al/In ratio of the samples increases as the TEGa flows increase in the InAlGaN quaternary growth process. High-resolution x-ray diffraction results show that the crystal quality is improved with increasing TEGa flows. Morphology of the InAlGaN/GaN heterostructures is characterized by an atomic force microscopy, and the growth mode of the InAlGaN quaternary shows a 2D island growth mode. The minimum surface roughness is 0.20 nm with the TEGa flows equaling to 3.6 $\mu$mol/min in rms. Hall effect measurement results show that the highest electron mobility $\mu$ is 1005.49 cm$^{2}$/Vs and the maximal two-dimensional electron gas is $1.63\times10^{13}$ cm$^{-2}$.
Received: 22 December 2015      Published: 29 April 2016
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/048101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/048101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ru-Dai Quan
Jin-Cheng Zhang
Sheng-Rui Xu
Jun-Shuai Xue
Yi Zhao
Jing Ning
Zhi-Yu Lin
Ze-Yang Ren
Yue Hao
[1]Steven C B, Kiki I, Jason A R, Walter K, Doewon P, Harry B D, Daniel D K, Alma E W and Richard L H 2001 IEEE Trans. Electron Devices 48 465
[2]Wu Y F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and Kapolnek D 2001 IEEE Trans. Electron Devices 48 586
[3]Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117
[4]Lv L, Zhang J C, Xue J S, Ma X H, Zhang W, Bi Z W, Zhang Y and Hao Y 2012 Chin. Phys. B 21 037104
[5]Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303
[6]Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 017303
[7]Wang R, Li G, Karbasian G, Guo J, Song B, Yue Y, Hu Z, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H G 2013 IEEE Electron Device Lett. 34 378
[8]Lecourt F, Agboton A, Ketteniss N, Behmenburg H, Defrance N, Hoel V, Kalisch H, Vescan A, Heuken M and De Jaeger J C 2013 IEEE Electron Device Lett. 34 978
[9]Ketteniss N, Khoshroo L R, Eickelkamp M, Heuken M, Kalisch H, Jansen R H and Vescan A 2010 Semicond. Sci. Technol. 25 075013
[10]Lim T, Aidam R, Waltereit P, Henkel T, Quay R, Lozar R, Maier T, Kirste L and Ambacher O 2010 IEEE Electron Device Lett. 31 671
[11]Chen C H, Huang L Y and Chen Y F 2002 Appl. Phys. Lett. 80 1397
[12]Hahn H, Reuters B, Wille A, Ketteniss N, Benkhelifa F, Ambacher O, Kalisch H and Vescan A 2010 Semicond. Sci. Technol. 25 055004
[13]Reuters B, Wille A, Ketteniss N, Hahn H, Holl?nde B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826
[14]Kyono T, Hirayama H, Akita K, Nakamura T and Ishibashi K 2005 J. Appl. Phys. 98 113514
[15]Yu T J, Pan Y B, Yang Z J, Xu K and Zhang G Y 2007 J. Cryst. Growth 298 211
[16]Pan Y B, Yu T J, Yang Z J, Wang H, Qin Z X, Hua X D, Wang K, Yao S D and Zhang G Y 2007 J. Cryst. Growth 298 341
[17]Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang Q M 2008 Appl. Surf. Sci. 255 3350
[18]Yu S F, Chang S J, Lin R M, LinY H, Lu Y C, Chang S P and Chiou Y Z 2010 J. Cryst. Growth 312 1920
[19]Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106
[20]Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Ning J and Hao Y 2012 J. Cryst. Growth 343 110
[21]Reuters B, Wille A, Ketteniss N, Hahn H, Holl?nder B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826
[22]Ahla J P, Hertkorna J, Kocha H, Gallera B, Michela B, Bindera M and Holl?nder B 2014 J. Cryst. Growth 398 33
[23]Aggerstam T, Lourdudoss S, Radamson H H, Sjodin M, Lorenzini P and Look D C 2006 Thin Solid Films 515 705
Related articles from Frontiers Journals
[1] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 048101
[2] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 048101
[3] Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao. Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(10): 048101
[4] Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng, Gu-Jin Hu, Xiao-Shuang Chen, Ning Dai. High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors[J]. Chin. Phys. Lett., 2016, 33(10): 048101
[5] Ru-Dai Quan, Jin-Cheng Zhang, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ya-Chao Zhang, Ze-Yang Ren, Yue Hao. Fabrication of GaN-Based Heterostructures with an InAlGaN/AlGaN Composite Barrier[J]. Chin. Phys. Lett., 2016, 33(08): 048101
[6] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 048101
[7] ZHANG Pin-Liang, GONG Zi-Zheng, JI Guang-Fu, WANG Qing-Song, SONG Zhen-Fei, CAO Yan, WANG Xiang. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa[J]. Chin. Phys. Lett., 2013, 30(6): 048101
[8] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 048101
[9] JIANG Hong-Xiang, and ZHAO Jiu-Zhou. Effect Mechanism of a Direct Current on the Solidification of Immiscible Alloys[J]. Chin. Phys. Lett., 2012, 29(8): 048101
[10] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 048101
[11] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 048101
[12] ZHAI Feng-Xiao, ZUO Fang-Yuan, HUANG Huan, WANG Yang, LAI Tian-Shu, WU Yi-Qun, GAN Fu-Xi. Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 048101
[13] ZHU Zun-Lue, FU Hong-Zhi, SUN Jin-Feng, LIU Yu-Fang, SHI De-Heng, XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide[J]. Chin. Phys. Lett., 2009, 26(8): 048101
[14] ZHANG Li, HE Qing, JIANG Wei-Long, LI Chang-Jian, SUN Yun. Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition[J]. Chin. Phys. Lett., 2009, 26(2): 048101
[15] FAN Zhen-Jun, PAN Feng, ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt[J]. Chin. Phys. Lett., 2009, 26(2): 048101
Viewed
Full text


Abstract