Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 046503    DOI: 10.1088/0256-307X/33/4/046503
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$
Xiang-Hong Ge1,2, Yan-Chao Mao1, Lin Li1, Li-Ping Li1, Na Yuan1, Yong-Guang Cheng1, Juan Guo1, Ming-Ju Chao1, Er-Jun Liang1**
1College of Physical Science and Engineering, Key Laboratory of Materials Physics (Ministry of Education), Zhengzhou University, Zhengzhou 450052
2Zhongyuan University of Technology, College of Science, Zhengzhou 450007
Cite this article:   
Xiang-Hong Ge, Yan-Chao Mao, Lin Li et al  2016 Chin. Phys. Lett. 33 046503
Download: PDF(872KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel material of ZrMnMo$_{3}$O$_{12}$ with negative thermal expansion is presented. The phase transition temperature and coefficient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and Raman spectra. It is shown that ZrMnMo$_{3}$O$_{12}$ adopts monoclinic structure with space group $P21/a$ (No. 14) from 298 to 358 K and transforms to orthorhombic with space group $Pnma$ (No. 62) above 363 K. The linear CTE obtained from the results of XRD refinement is $-2.80\times10^{-6}$ K$^{-1}$ from 363 to 873 K. The CTE of the bulk cylinder ceramic measured by a thermal dilatometer is $-4.7\times10^{-6}$ K$^{-1}$ from 373 to 773 K approximatively.
Received: 27 November 2015      Published: 29 April 2016
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  78.30.-j (Infrared and Raman spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/046503       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/046503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang-Hong Ge
Yan-Chao Mao
Lin Li
Li-Ping Li
Na Yuan
Yong-Guang Cheng
Juan Guo
Ming-Ju Chao
Er-Jun Liang
[1]Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2]Wang C, Wang T M, Shen R and Liang J K 2001 Physics 12 772 (in Chinese)
[3]Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)
[4]Yuan B H, yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501
[5]Wang J R, Deng J X and Yu R B 2011 Dalton Trans. 40 3394
[6]Sumithra S, Tyagi A K and Umarji A M 2005 Mater. Sci. Eng. B 116 14
[7]Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T and Chen D F 2012 Chin. Phys. B 21 116102
[8]Sumithra S and Umarji A M 2004 Solid State Sci. 6 1313
[9]Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.: Condens. Matter 20 275224
[10]Cairns A B, Catafesta J, Levelut C, Rouquette J, Lee A, Peters L, Thompson A L, Dmitriev V, Haines J and Goodwin A L 2013 Nat. Mater. 12 212
[11]Li C W, Tang X L, Munoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[12]Azuma M, Chen W T, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y and Attfield J P 2011 Nat. Commun. 2 234
[13]Chen J, Wang F F, Huang Q Z, Hu L, Song X P, Deng J X, Yu R B and Xing X R 2013 Sci. Rep. 3 2458
[14]Tong P, Louca D, King G, Llobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
[15]Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
[16]Gindhart A M, Lind C and Green M 2008 J. Mater. Res. 23 210
[17]Omote A, Yotsuhashi S, Zenitani Y and Yamada Y 2011 J. Am. Ceram. Soc. 94 2285
[18]Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F and Ferrira F F 2008 Phys. Status Solidi (b) 245 2514
[19]Miller K J, Johnson M B, White M A and Marinkovic B A 2012 Solid State Commun. 152 1748
[20]Baiz T I, Gindhart A M, Kraemer S K and Lind C 2008 J. Sol-Gel Sci. Technol. 47 128
[21]Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
[22]Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J and Liang E J 2014 J. Solid State Chem. 218 15
[23]Kochura A G, Kozakovb A T, Nikolskiib A V, Googlev K A, Pavlenko A V, Verbenko I A, Reznichenko L A, Krasnenko T I and Kochur A G 2012 J. Electron Spectrosc. Relat. Phenom. 185 175
[24]Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H and Liang E J 2014 Chin. Phys. B 23 066501
[25]Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[26]Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[27]Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y and Guo Z X 2013 Mater. Res. Bull. 48 2724
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 046503
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 046503
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 046503
[4] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 046503
[5] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 046503
[6] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 046503
[7] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 046503
[8] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 046503
[9] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 046503
[10] YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo, LIU Xian-Sheng, CHENG Yong-Guang, CHAO Ming-Ju, LIANG Er-Jun. High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7[J]. Chin. Phys. Lett., 2014, 31(07): 046503
[11] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 046503
[12] SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng, LI Zhi-Yuan, YUAN Bao-He, WANG Jun-Qiao. A Negative Thermal Expansion Material of ZrMgMo3O12[J]. Chin. Phys. Lett., 2013, 30(12): 046503
[13] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 046503
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 046503
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 046503
Viewed
Full text


Abstract