Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 044201    DOI: 10.1088/0256-307X/33/4/044201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes
Ming-Liang Liao1,2, Yan-Yu Wei1**, Hai-Long Wang1,2, Jin Xu1, Yang Liu1,2, Guo Guo1, Xin-Jian Niu1, Yu-Bin Gong1, Gun-Sik Park3
1National Key Laboratory of High Power Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
2Southwest China Research Institute of Electronic Equipment (CETC 29), Chengdu 610036
3Center for THz-Bio Application Systems, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
Cite this article:   
Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang et al  2016 Chin. Phys. Lett. 33 044201
Download: PDF(644KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The 60-GHz traveling-wave tube (TWT) prevails nowadays as the amplifier for the satellite communication and electronic countermeasures. The folded waveguide (FW) is a promising all-metal slow-wave structure (SWS) for the 60-GHz TWT with advantages of robust performance, fine heat dissipation, considerable power and bandwidth. A novel FW periodically loaded with rectangular grooves is analyzed for the purpose of gaining higher power and gain. The rf characteristics are investigated by numerical simulation, and the nonlinear large-signal performance of such a TWT is analyzed by a 3D particle-in-cell code MAGIC. Compared with normal circuits, relatively higher continuous-wave power (40–56 W) and similar bandwidth (5 GHz) are predicted by simulation. Meanwhile, the designed operation voltage is 10.5 kV, which keeps the low-voltage advantage of the popular helix TWT competitor. The novel FW will favor the design of a broadband and high-power 60-GHz TWT.
Received: 25 November 2015      Published: 29 April 2016
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/044201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/044201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Liang Liao
Yan-Yu Wei
Hai-Long Wang
Jin Xu
Yang Liu
Guo Guo
Xin-Jian Niu
Yu-Bin Gong
Gun-Sik Park
[1]He J et al 2009 Chin. Phys. Lett. 26 114103
[2]Liao M L et al 2009 Chin. Phys. Lett. 26 114207
[3]Fu C F et al 2008 Chin. Phys. Lett. 25 3478
[4]Guenter K K et al 2001 IEEE Trans. Electron Devices 48 68
[5]Wang W X et al 2003 Int. J. Infrared Millimeter Waves 24 1469
[6]Han S T et al 2004 IEEE Trans. Plasma Sci. 32 60
[7]Han S T et al 2003 Microwave Opt. Technol. Lett. 38 161
[8]Na Y H, Chung S W and Choi J J 2002 IEEE Trans. Plasma Sci. 30 1017
[9]Booske J H et al 2005 IEEE Trans. Electron Devices 52 685
[10]Bhattacharjee S et al 2004 IEEE Trans. Plasma Sci. 32 1002
[11]Liao M L et al 2010 IEEE Trans. Plasma Sci. 38 1574
[12]He J et al 2014 J. Infrared Millimeter Terahertz Waves 35 288
[13]Ludeking L, Smithe D, Bettenhausen M and Hayes S 1999 Magic User's Manual (Virginia: ATK Mission Research Corporation)
Related articles from Frontiers Journals
[1] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 044201
[2] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings *[J]. Chin. Phys. Lett., 0, (): 044201
[3] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings[J]. Chin. Phys. Lett., 2020, 37(6): 044201
[4] B. Nizamani, S. Salam, A. A. A. Jafry, N. M. Zahir, N. Jurami, M. I. M. Abdul Khudus, A. Shuhaimi, E. Hanafi, S. W. Harun. Indium Tin Oxide Coated D-Shape Fiber as a Saturable Absorber for Generating a Dark Pulse Mode-Locked Laser[J]. Chin. Phys. Lett., 2020, 37(5): 044201
[5] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 044201
[6] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 044201
[7] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 044201
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 044201
[9] Ying-Yi Li, Ke Yang, Gao-You Liu, Li-Wei Xu, Bao-Quan Yao, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan. A 1kHz Fe:ZnSe Laser Gain-Switched by a ZnGeP$_{2}$ Optical Parametric Oscillator at 77K[J]. Chin. Phys. Lett., 2019, 36(7): 044201
[10] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 044201
[11] Ying-Yi Li, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan, Chun-Fa Guo, Li-Wei Xu. A Gain-Switched Fe:ZnSe Laser Pumped by a Pulsed Ho,Pr:LLF Laser[J]. Chin. Phys. Lett., 2019, 36(4): 044201
[12] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 044201
[13] Teng Sun, Jian-Guo Xin, Yu-Chen Song. Laser-Diode Pumped Passive Q-Switched Laser with Quick Tunable Pulse-Width Capability[J]. Chin. Phys. Lett., 2019, 36(3): 044201
[14] Alabbas A. Al-Azzawi, Aya A. Almukhtar, P. H. Reddy, D. Dutta, S. Das, A. Dhar, M. C. Paul, U. N. Zakaria, S. W. Harun. A Flat-Gain Double-Pass Amplifier with New Hafnia-Bismuth-Erbium Codoped Fiber[J]. Chin. Phys. Lett., 2018, 35(5): 044201
[15] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 044201
Viewed
Full text


Abstract