Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 040301    DOI: 10.1088/0256-307X/33/4/040301
GENERAL |
Security of the Decoy State Two-Way Quantum Key Distribution with Finite Resources
Ya-Bin Gu1,2, Wan-Su Bao1,2**, Yang Wang1,2, Chun Zhou1,2
1Zhengzhou Information Science and Technology Institute, Zhengzhou 450004
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Ya-Bin Gu, Wan-Su Bao, Yang Wang et al  2016 Chin. Phys. Lett. 33 040301
Download: PDF(511KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The quantum key distribution (QKD) allows two parties to share a secret key by typically making use of a one-way quantum channel. However, the two-way QKD has its own unique advantages, which means the two-way QKD has become a focus recently. To improve the practical performance of the two-way QKD, we present a security analysis of a two-way QKD protocol based on the decoy method with heralded single-photon sources (HSPSs). We make use of two approaches to calculate the yield and the quantum bit error rate of single-photon and two-photon pulses. Then we present the secret key generation rate based on the GLLP formula. The numerical simulation shows that the protocol with HSPSs has an advantage in the secure distance compared with weak coherent state sources. In addition, we present the final secret key generation rate of the LM05 protocol with finite resources by considering the statistical fluctuation of the yield and the error rate.

Received: 12 November 2015      Published: 29 April 2016
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/040301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Bin Gu
Wan-Su Bao
Yang Wang
Chun Zhou
[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p 175
[2] Muller A, Zbinde H and Gisin N 1996 Europhys. Lett. 33 335
[3] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[4] Wojcik A 2003 Phys. Rev. Lett. 90 157901
[5] Cai Q Y 2003 Phys. Rev. Lett. 91 109801
[6] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[7] Degiovanni I P, Berchera I R, Castelletto S, Rastello L M, Bovino F A, Colla A M and Castagnoli G 2004 Phys. Rev. A 69 032310
[8] Degiovanni I P, Berchera I R, Castelletto S, Rastello L M, Bovino F A, Colla A M and Castagnoli G 2005 Phys. Rev. A 71 16302
[9] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[10] Beaudry N J, Lucamarini M, Mancini S and Renner R 2013 Phys. Rev. A 88 062302
[11] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[12] Shaari J S, Bahari I and Ali S 2011 Opt. Commun. 284 697
[13] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[14] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[15] Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[16] Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[17] Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 282 4162
[18] Tomamichel M, Lim C C W and Renner R 2012 Nat. Commun. 3 634
[19] Du Y N, Xie W Z, Jin X et al 2015 Acta Phys. Sin. 64 110301 (in Chinese)
[20] Tomoyuki H and Takayoshi K 2006 Phys. Rev. A 73 032331
[21] Lucamarini M, Cere A, Giuseppe G D, Mancini S, Vitali D and Tombesi P 2007 Open Sys. Inf. Dyn. 14 169
[22] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[23] Devetak I and Winter A 2005 Proc. R. Soc. A 461 207
[24] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[25] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 040301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 040301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 040301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 040301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 040301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 040301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 040301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 040301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 040301
Viewed
Full text


Abstract