Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 024206    DOI: 10.1088/0256-307X/33/2/024206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser
Wei-Xin Liu**, Ming-Zhe Sun
Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209
Cite this article:   
Wei-Xin Liu, Ming-Zhe Sun 2016 Chin. Phys. Lett. 33 024206
Download: PDF(772KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The beat frequency in a dual frequency He–Ne laser varies while the resonant cavity length is tuned. As to the laser with two longitudinal modes, the variation amplitude is commonly less than 500 kHz, proven by experiments and theories. This study reveals an anomalous variation of the beat frequency when a piece of element is put into the cavity and is aligned with the laser axis. Consequently the variation amplitude could reach 22 MHz, several dozen times larger than that without the intra-cavity element. This cannot be explained only by laser mode pulling and pushing effects. Some influencing factors are investigated experimentally, including the tilted angle of the element and the distance between its surface and cavity mirror. The qualitative analysis is discussed, which agrees with the experimental results.
Received: 23 November 2015      Published: 26 February 2016
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/024206       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/024206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Xin Liu
Ming-Zhe Sun
[1] Oram R J et al 1993 J. Phys. D 26 1169
[2] Petrovskiy V N et al 2007 Laser Phys. Lett. 4 191
[3] Zhang P et al 2013 Opt. Lett. 38 4296
[4] Jiang L, Tan, Y D and Zhang S L 2015 Opt. Lett. 40 3615
[5] Read S C et al 1988 J. Opt. Soc. Am. B 5 1832
[6] Holzapfel W, Neuschaefer-Rube S and Neuschaefer-Rube U 1993 Appl. Opt. 32 6022
[7] Zhang S L et al 1995 Opt. Lasers Eng. 23 1
[8] Wu Y et al 2013 Chin. Phys. B 22 124205
[9] Naumov N V et al 1997 Laser Phys. 7 426
[10] Tan Y D et al 2013 Laser Phys. Lett. 10 025001
[11] Tan Y D et al 2013 Sci. Rep. 3 2912
[12] Cheng B et al 2014 Chin. Phys. B 23 104222
[13] Gonchukov S, Vakurov M and Yermachenko V 2006 Laser Phys. Lett. 3 314
[14] Tan Y D et al 2013 Chin. Phys. Lett. 30 124202
[15] Ding Y C et al 2015 Proc. SPIE 9524 95240L
[16] Yan L et al 2000 Opt. Eng. 39 3039
[17] Liu W X, Liu M and Zhang S L 2008 Appl. Opt. 47 5562
[18] Li L et al 2007 Acta Phys. Sin. 56 2663 (in Chinese)
[19] Tan Y D and Zhang S L 2007 Chin. Phys. Lett. 24 2590
[20] Yermachenko V M 1991 Laser Phys. 1 129
[21] Baxter G W 1996 IEEE Photon. Technol. Lett. 8 1015
[22] Zhou L F et al 2007 Chin. Phys. Lett. 24 3141
[23] Zhang S L and Han Y M 1993 Chin. Phys. Lett. 10 728
[24] Xiao Y et al 2003 Chin. Phys. Lett. 20 230
[25] Lamb W E 1964 Phys. Rev. 134 A1429
[26] Kurochkin V Y et al 1997 Appl. Phys. B 65 37
[27] Holzapfel W and Settgast W 1989 Appl. Opt. 28 4585
[28] Zhu S S et al 2014 Acta Phys. Sin. 63 064201 (in Chinese)
[29] Zong X B, Liu W X and Zhang S L 2005 Chin. Phys. Lett. 22 1906
[30] Doyle W M and White M B 1966 Phys. Rev. 147 359
Related articles from Frontiers Journals
[1] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 024206
[2] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings *[J]. Chin. Phys. Lett., 0, (): 024206
[3] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings[J]. Chin. Phys. Lett., 2020, 37(6): 024206
[4] B. Nizamani, S. Salam, A. A. A. Jafry, N. M. Zahir, N. Jurami, M. I. M. Abdul Khudus, A. Shuhaimi, E. Hanafi, S. W. Harun. Indium Tin Oxide Coated D-Shape Fiber as a Saturable Absorber for Generating a Dark Pulse Mode-Locked Laser[J]. Chin. Phys. Lett., 2020, 37(5): 024206
[5] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 024206
[6] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 024206
[7] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 024206
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 024206
[9] Ying-Yi Li, Ke Yang, Gao-You Liu, Li-Wei Xu, Bao-Quan Yao, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan. A 1kHz Fe:ZnSe Laser Gain-Switched by a ZnGeP$_{2}$ Optical Parametric Oscillator at 77K[J]. Chin. Phys. Lett., 2019, 36(7): 024206
[10] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 024206
[11] Ying-Yi Li, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan, Chun-Fa Guo, Li-Wei Xu. A Gain-Switched Fe:ZnSe Laser Pumped by a Pulsed Ho,Pr:LLF Laser[J]. Chin. Phys. Lett., 2019, 36(4): 024206
[12] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 024206
[13] Teng Sun, Jian-Guo Xin, Yu-Chen Song. Laser-Diode Pumped Passive Q-Switched Laser with Quick Tunable Pulse-Width Capability[J]. Chin. Phys. Lett., 2019, 36(3): 024206
[14] Alabbas A. Al-Azzawi, Aya A. Almukhtar, P. H. Reddy, D. Dutta, S. Das, A. Dhar, M. C. Paul, U. N. Zakaria, S. W. Harun. A Flat-Gain Double-Pass Amplifier with New Hafnia-Bismuth-Erbium Codoped Fiber[J]. Chin. Phys. Lett., 2018, 35(5): 024206
[15] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 024206
Viewed
Full text


Abstract