Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 023201    DOI: 10.1088/0256-307X/33/2/023201
ATOMIC AND MOLECULAR PHYSICS |
Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser
Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang**, Lian-Tuan Xiao, Suo-Tang Jia
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
Cite this article:   
Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang et al  2016 Chin. Phys. Lett. 33 023201
Download: PDF(690KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A high-resolution two-photon spectrum of 5$S_{1/2}\to5P_{3/2}\to5D_{5/2}$ transitions in a thermal $^{85}$Rb vapor cell is presented by using an optical frequency comb and a cw laser. The fluorescence of 6$P_{3/2}\to5S_{1/2}$ spontaneous emission is detected when the cw laser frequency is scanned from the 5$S_{1/2}$ ground state to 5$P_{3/2}$ hyperfine levels and the optical frequency comb repetition rate is fixed. The hyperfine splittings ($F_{\rm f}=2$–5) of the 5$D_{5/2}$ excited state are well resolved. The dependences of fluorescence intensities on the cw laser intensity and temperature of $^{85}$Rb vapor cell are studied, respectively. The experimental results are in good agreement with the theoretical analyses.
Received: 19 October 2015      Published: 26 February 2016
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/023201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/023201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Kai Cao
Peng-Rui Fan
Yi-Chi Zhang
Li-Rong Wang
Lian-Tuan Xiao
Suo-Tang Jia
[1] Gerginov V, Calkins K, Tanner C E, McFerran J J, Diddams S, Bartels A and Hollberg L 2006 Phys. Rev. A 73 032504
[2] Mohr P J, Taylor B N and Newell D B 2008 Rev. Mod. Phys. 80 633
[3] Leggett A J 2001 Rev. Mod. Phys. 73 307
[4] Wynards R and Weyers S 2005 Metrologia 42 S64
[5] Budker D and Romalis M 2007 Nat. Phys. 3 227
[6] Fischer M, Kolachevsky N, Zimmermann M, Holzwarth R et al 2004 Phys. Rev. Lett. 92 230802
[7] Guéna J, Lintz M and Bouchiat M A 2005 J. Opt. Soc. Am. B 22 21
[8] Stalnaker J E, Mbele V, Gerginov V, M Fortier T, Diddams S A, Hollberg L and Tanner C E 2010 Phys. Rev. A 81 043840
[9] Aumiler D, Ban T, Skenderovi? H and Pichler G 2005 Phys. Rev. Lett. 95 233001
[10] Snadden M J, Bell A S, Riis E and Ferguson A I 1996 Opt. Commun. 125 70
[11] Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201
[12] Bernard J E, Madej A A, Siemsen K J, Marmet L, Latrasse C, Touahri D, Poulin M, Allard M and Têtu M 2000 Opt. Commun. 173 357
[13] Jin L, Zhang Y C, Xiang S S, Wang L R, Ma J, Zhao Y T, Xiao L T and Jia S T 2013 Chin. Phys. Lett. 30 103201
[14] Barmes I, Witte S and Eikema K S E 2013 Phys. Rev. Lett. 111 023007
[15] Stalnaker J E, Chen S L, Rowan M E, Nguyen K, Pradhananga T, Palm C A and Jackson K D F 2012 Phys. Rev. A 86 033832
[16] Olson A J, Carlson E J and Mayer S K 2006 Am. J. Phys. 74 218
[17] Ban T, Aumiler D, Skenderovi? H and Pichler G 2006 Phys. Rev. A 73 043407
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 023201
[2] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 023201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 023201
[4] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 023201
[5] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 023201
[6] Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang, Qian Liu, Qiu-Zhi Qu, De-Sheng Lü, Liang Liu. State Preparation in a Cold Atom Clock by Optical Pumping[J]. Chin. Phys. Lett., 2017, 34(7): 023201
[7] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 023201
[8] Yi-Chi Zhang, Peng-Rui Fan, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control[J]. Chin. Phys. Lett., 2016, 33(11): 023201
[9] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 023201
[10] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 023201
[11] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 023201
[12] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 023201
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 023201
[14] JIN Li, ZHANG Yi-Chi, XIANG Shao-Shan, WANG Li-Rong, MA Jie, ZHAO Yan-Ting, XIAO Lian-Tuan, JIA Suo-Tang. Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb[J]. Chin. Phys. Lett., 2013, 30(10): 023201
[15] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 023201
Viewed
Full text


Abstract