Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 123601    DOI: 10.1088/0256-307X/33/12/123601
ATOMIC AND MOLECULAR PHYSICS |
Generalized Hellmann–Feynman Theorem and Its Applications
Xin Sun1,2**
1Department of Physics, Fudan University, Shanghai 200433
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Xin Sun 2016 Chin. Phys. Lett. 33 123601
Download: PDF(287KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Hellmann–Feynman (H-F) theorem is generalized from stationary state to dynamical state. The generalized H-F theorem promotes molecular dynamics to go beyond adiabatic approximation and clears confusion in the Ehrenfest dynamics.
Received: 02 September 2016      Published: 29 December 2016
PACS:  36.20.-r (Macromolecules and polymer molecules)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/123601       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/123601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Sun
[1]Hellmann H 1937 Deuticke Leipzig 285
[2]Feynman R P 1939 Phys. Rev. 56 340
[3]Bala P, Lesyng B and McCammon J A 1994 Chem. Phys. Lett. 219 259
[4]Ventra M D and Pantelides S T 2000 Phys. Rev. B 61 16207
[5]Horsfield A P et al 2004 J. Phys.: Condens. Matter 16 3609
[6]Horsfield A P et al 2006 Rep. Prog. Phys. 69 1195
[7]Horsfield A P et al 2004 J. Phys.: Condens. Matter 16 8251
[8]Esteve J G, Falceto F et al 2009 arXiv:0912.4153vl
[9]Stafstr?m S 2010 Chem. Soc. Rev. 39 2484
[10]Johansson A and Stafstr?m S 2001 Phys. Rev. Lett. 86 3602
[11]Sun Z and Stafstr?m S 2011 J. Chem. Phys. 135 074902
[12]An Z, Wu C Q and Sun X 2004 Phys. Rev. Lett. 93 216407
[13]Dong J, Si W and Wu C Q 2016 J. Chem. Phys. 144 144905
Related articles from Frontiers Journals
[1] CHEN Ren-Ai, SUN Xin. Triplet Exciton Transition Induced Highly Efficient Fluorescent Channel in Organic Electroluminescence[J]. Chin. Phys. Lett., 2015, 32(08): 123601
[2] CHEN Jiang-Xing, ZHENG Qiang, HUANG Chun-Yun, XU Jiang-Rong, YING He-Ping. Dynamics of Nano-Chain Diffusing in Porous Media[J]. Chin. Phys. Lett., 2015, 32(06): 123601
[3] LI Xiao-Xue, DONG Xian-Feng, GAO Kun, XIE Shi-Jie** . Reverse Polarization of a High-Energy Exciton in Conjugated Polymers[J]. Chin. Phys. Lett., 2011, 28(12): 123601
[4] CAO Xiao-Rong, TAN Ye-Bang, XU Gui-Ying. Aggregation Behaviour of Cationic Diblock Copolymer (MTAC)10(BA)16: MesoDyn Simulation Study[J]. Chin. Phys. Lett., 2007, 24(2): 123601
[5] ZHANG Da-Cheng, LIU De-Sheng, MEI Liang-Mo, XIE Shi-Jie, SUN Xin. Re-excited States in Conjugated Polymers[J]. Chin. Phys. Lett., 2007, 24(3): 123601
[6] LI Sheng, LONG De-Shun, SUN Xin,. Photoexcitation of Bipolaron in Conducting Polymers[J]. Chin. Phys. Lett., 2002, 19(5): 123601
[7] LIU Wenqing, XIA Yuxing, LIU Songhao, R. Ramponi*, R. Cubeddu*. Time-resolved Fluorescence Decay Study of Hematoporphyrin Derivative[J]. Chin. Phys. Lett., 1991, 8(1): 123601
Viewed
Full text


Abstract