Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 117801    DOI: 10.1088/0256-307X/33/11/117801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Contents of Multiwall Carbon Nanotubes in Polyaniline Films on Optical and Electrical Properties of Polyaniline
N. Bafandeh1, M. M. Larijani2**, A. Shafiekhani3,4, M. R. Hantehzadeh1, N. Sheikh2
1Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Nuclear Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3Physics Department, Alzahra University, Tehran, Iran
4School of Physics, Institute for Research in Fundamental Sciences, Tehran, Iran
Cite this article:   
N. Bafandeh, M. M. Larijani, A. Shafiekhani et al  2016 Chin. Phys. Lett. 33 117801
Download: PDF(656KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of different contents of multiwall carbon nanotubes (MWCNTs) on optical and electrical properties of polyaniline (PANI). The MWCNTs/PANI composites are deposited on glass substrates coated with indium tin oxide (ITO) by the spin-coating technique. The scanning electron microscopy shows that nanotubes are coated with the PANI layer and x-ray diffraction patterns show that all deposited composite films have an amorphous character. The analysis of a UV-vis spectrophotometer indicates the blue shift of the absorbance peak and a decrease in optical band gap value by the enhancement of the CNT content in the PANI matrix while the Urbach energy increases. The Raman spectrum shows the blue shift 1404$\rightarrow$1417 cm$^{-1}$ and photoluminescence spectra show an increase in the intensity of characteristic PANI peak at 436 nm with the increasing CNT content.
Received: 30 June 2016      Published: 28 November 2016
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  82.35.Lr (Physical properties of polymers)  
  61.82.Pv (Polymers, organic compounds)  
  64.70.pj (Polymers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/117801       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/117801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
N. Bafandeh
M. M. Larijani
A. Shafiekhani
M. R. Hantehzadeh
N. Sheikh
[1]Palaniappan S and John A 2008 Prog. Polym. Sci. 33 732
[2]Zhang X, Ji L, Zhang S and Yang W 2007 J. Power Sources 173 1017
[3]Kulkarni V G, Campbell L D and Mathew W R 1989 Synth. Met. 30 321
[4]Heeger A J 2001 Rev. Mod. Phys. 73 681
[5]T?lu ? Solaymani S, Bramowicz M, Naseri N, Kulesza S and Ghaderi A 2016 RSC Adv. 6 27228
[6]Stach S, Garczyk, T?lu ? Solaymani S, Ghaderi A, Moradian R, Nezafat Negin B, Elahi S M and Gholamali H 2015 J. Phys. Chem. C 119 17887
[7]T?l ? Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A and Ahmadirad M 2016 J. Ind. Eng. Chem. 35 158
[8]T?lu ? Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F and Solaymani S 2015 Ind. Eng. Chem. Res. 54 8212
[9]Srivastavaa S, Sharma S S, Kumar S, Agrawal Sh, Singh M and Vijay Y K 2009 Int. J. Hydrogen Energy 34 8444
[10]Lin, Y, Cui, X, Yen, C H and Wai C M 2005 Langmuir 21 11474
[11]Lee H, Rim H, Lee J Y, Lee J, Yoon J, Bae W and Yang S 2008 J. Nanosci. Nanotechnol. 8 5464
[12]Ikeda N, Teshima K and Miyasaka T 2006 Chem. Commun. 16 1733
[13]Singh R, Dhand C, Sumana G, Verma R, Sood S, Gupta R K and Malhotra B D 2010 J. Mol. Recognit. 23 472
[14]Ben-Valid S, Dumortier H, Decossas M, Sfez R, Meneghetti M, Bianco A and Yitzchaik S 2010 J. Mater. Chem. 20 2408
[15]Yao Q, Chen L D, Zhang W Q, Liufu S C and Chen X H 2010 ACS Nano 4 2445
[16]Panhuis M I H, Doherty K J, Sainz R, Benito A M and Maser W K 2008 J. Phys. Chem. C 112 1441
[17]Zhou Y, Qin Z Y, Li L, Zhang Y, Wei Y L, Wang L F and Zhu M F 2010 Electrochim. Acta 55 3904
[18]Haspulat B, Gulce A and Gulce H 2013 Hazardous Mater. 260 518
[19]Nasirian S and Milani M H 2014 Int. J. Hydrogen Energy 39 630
[20]Choi D, Hong S and Son Y 2014 Materials 7 7662
[21]Patil S L, Chougule M A, Pawar S G, Sen S and Patil V B 2012 Soft Nanosci. Lett. 2 46
[22]Chakraborty G, Gupta K, Rana D and Meikap A K 2012 Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 035015
[23]Subramanian S and Padiyan D P 2008 Mater. Chem. Phys. 107 392
[24]Choudhury B, Dey M and Choudhury A 2013 Int. Nano Lett. 3 25
[25]Tauc J 1974 Amorphous and Liquid Semiconductors (London: Plenum Press)
[26]Yuan B, Yu L, Sheng L, An K and Zhao X 2012 J. Phys. D 45 235108
[27]Zhang J, Liu C and Shi G 2005 J. Appl. Polym. Sci. 96 732
[28]Urbach B, Korbakov N, Bar-David Y, Yitzchaik S and Sa'ar A 2007 J. Phys. Chem. C 111 16586
[29]Babu V J, Vempati S and Ramakrishna S 2013 Mater. Sci. Appl. 4 1
[30]Devi M R, Lawrence B, Prithivikumaran N and Jeyakumaran N 2014 Chem. Tech. Res. 13 5400
[31]Gfroerer T H 2000 Encyclopedia of Analytical Chemistry (Chichester: John Wiley & Sons) p 9209
Related articles from Frontiers Journals
[1] Fanwei Liu, Sisi Huang, Sidan Chen, Xinzhong Chen, Mengkun Liu, Kuijuan Jin, and Xi Chen. Infrared Nano-Imaging of Electronic Phase across the Metal–Insulator Transition of NdNiO$_3$ Films[J]. Chin. Phys. Lett., 2022, 39(7): 117801
[2] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 117801
[3] Feng Li, Weiyuan Duan, Manuel Pomaska, Malte Köhler, Kaining Ding, Yong Pu, Urs Aeberhard, and Uwe Rau. Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling[J]. Chin. Phys. Lett., 2021, 38(3): 117801
[4] Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li, and Yong Pu. Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides[J]. Chin. Phys. Lett., 2020, 37(8): 117801
[5] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 117801
[6] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 117801
[7] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 117801
[8] Jun Zhang, Jun Liao, Le-Xi Shao, Shu-Wen Xue, Zhi-Guo Wang. Lithium/Silver-Doped Cu$_{2}$ZnSnS$_{4}$ with Tunable Band Gaps and Phase Structures: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(8): 117801
[9] Chao Zhou, Hui Zhou, Hua-Ping Zuo, Kai-Feng Zhang, Hu Wang, Yu-Qing Xiong. A Reflective Inorganic All-Thin-Film Flexible Electrochromic Device with a Seven-Layer Structure[J]. Chin. Phys. Lett., 2018, 35(7): 117801
[10] Ze-Ning XIONG, Xiang-Qian XIU, Yue-Wen LI, Xue-Mei HUA, Zi-Li XIE, Peng CHEN, Bin LIU, Ping HAN, Rong ZHANG, You-Dou ZHENG. Growth of $\beta$-Ga$_{2}$O$_{3}$ Films on Sapphire by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2018, 35(5): 117801
[11] Hong Wu, Yun-Hui Wang, Zhi-Hong Yang, Feng Li. Two-Dimensional Borane with 'Banana' Bonds and Dirac-Like Ring[J]. Chin. Phys. Lett., 2018, 35(3): 117801
[12] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 117801
[13] Somayeh Asgary, Amir Hoshang Ramezani. Dependence of Nitrogen/Argon Reaction Gas Amount on Structural, Mechanical and Optical Properties of Thin WN$_{x}$ Films[J]. Chin. Phys. Lett., 2017, 34(12): 117801
[14] Wen-Jing Ban, Wen-Ting Guo, Jian-Lin Luo, Nan-Lin Wang. Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb[J]. Chin. Phys. Lett., 2017, 34(7): 117801
[15] Hong Liu, Jing-Ping Zhu, Kai Wang, Xiu-Hong Wang, Rong Xu. Three-Component Model for Bidirectional Reflection Distribution Function of Thermal Coating Surfaces[J]. Chin. Phys. Lett., 2016, 33(06): 117801
Viewed
Full text


Abstract