Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 117303    DOI: 10.1088/0256-307X/33/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication
Jia-Min Gong1, Quan Wang1,2**, Jun-Da Yan2, Feng-Qi Liu2, Chun Feng2, Xiao-Liang Wang2, Zhan-Guo Wang2
1School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121
bKey Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Jia-Min Gong, Quan Wang, Jun-Da Yan et al  2016 Chin. Phys. Lett. 33 117303
Download: PDF(694KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10$^{9}$ $\Omega$$\cdot$cm) are induced by individual mechanisms for the electron traps' formation: the Fe MD buffer (sample A) and the UID buffer with high density of edge-type dislocations ($7.24\times10^{9}$ cm$^{-2}$, sample B). The 300 K Hall test indicates that the mobility of sample A with Fe doping (2503 cm$^{2}$V$^{-1}$s$^{-1}$) is much higher than sample B (1926 cm$^{2}$V$^{-1}$s$^{-1})$ due to the decreased scattering effect on the two-dimensional electron gas. HEMT devices are fabricated on the two samples and pulsed $I$–$V$ measurements are conducted. Device A shows better gate pinch-off characteristics and a higher threshold voltage ($-$2.63 V) compared with device B ($-$3.71 V). Lower gate leakage current $|I_{\rm GS}|$ of device A ($3.32\times10^{-7}$ A) is present compared with that of device B ($8.29\times10^{-7}$ A). When the off-state quiescent points $Q_{2}$ ($V_{\rm GQ2}=-8$ V, $V_{\rm DQ2}=0$ V) are on, $V_{\rm th}$ hardly shifts for device A while device B shows +0.21 V positive threshold voltage shift, resulting from the existence of electron traps associated with the dislocations in the UID-GaN buffer layer under the gate. Under pulsed $I$–$V$ and transconductance $G_{\rm m}$–$V_{\rm GS}$ measurement, the device with the Fe MD-doped buffer shows more potential in improving reliability upon off-state stress.
Received: 12 July 2016      Published: 28 November 2016
PACS:  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61204017 and 61334002, the National Basic Research Program of China, and the National Science and Technology Major Project of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/117303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/117303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Min Gong
Quan Wang
Jun-Da Yan
Feng-Qi Liu
Chun Feng
Xiao-Liang Wang
Zhan-Guo Wang
[1]Ikeda N, Niiyama Y, Kambayashi H, Sato Y, Nomura T, Kato S and Yoshida S 2010 Proc. IEEE 98 1151
[2]Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[3]Cao Y, Zimmermann T, Xing H L and Jena D 2010 Appl. Phys. Lett. 96 042102
[4]Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K and Speck J S 2004 J. Vac. Sci. Technol. B 22 1145
[5]Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D, Hanser D, Preble E, Williams N M and Evans K 2007 Appl. Phys. Lett. 90 093509
[6]Bougrioua Z, Azize M, Lorenzini P, Laügt M and Haas H 2005 Phys. Status Solidi A 202 536
[7]Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377
[8]Cheong M G, Kim K S, Oh C S, Namgung N W, Yang G M, Hong C H, Lim K Y, Suh E K, Nahm K S, Lee H J, Lim D H and Yoshikawa A 2000 Appl. Phys. Lett. 77 2557
[9]Xu F J, Xu J, Shen B, Miao Z L, Huang S, Lu L, Yang Z J, Qin Z X and Zhang G Y 2008 Thin Solid Films 517 588
[10]Wang X L, Chen T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C and Li J M 2008 Solid-State Electron. 52 926
[11]Hsu J W P, Manfra M J, Molnar R J, Heying B and Speck J S 2002 Appl. Phys. Lett. 81 79
[12]Ganguly S, Konar A, Hu Z Y, Xing H L and Jena D 2012 Appl. Phys. Lett. 101 253519
[13]?apajna M, Kaun S W, Wong M H, Gao F, Palacios T, Mishra U K, Speck J S and Kuball M 2011 Appl. Phys. Lett. 99 223501
[14]Peng E C, Wang X L, Xiao H L, Wang C M, Yin H B, Chen H, Feng C, Jiang L J, Hou X and Wang Z G 2013 J. Cryst. Growth 383 25
[15]Wang X L, Hu G X, Ma Z Y, Ran J X, Wang C M, Xiao H L, Tang J, Li J P, Wang J X, Zeng Y P, Li J M and Wang Z G 2007 J. Cryst. Growth 298 835
[16]Selvaraj S L, Suzue T and Egawa T 2009 IEEE Electron Device Lett. 30 587
[17]Srikant V, Speck J S and Clarke D R 1997 J. Appl. Phys. 82 4286
[18]Jena D, Gossard A C and Mishra U K 2000 Appl. Phys. Lett. 76 1707
[19]Lisesivdin S B, Yildiz A, Balkan N, Kasap M, Ozcelik S and Ozbay E 2010 J. Appl. Phys. 108 013712
[20]Chini A, Soci F, Meneghini M, Meneghesso G and Zanoni E 2013 IEEE Trans. Electron Devices 60 3176
[21]Chen W J, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501
[22]Silvestri M, Uren M J and Kuball M 2013 Appl. Phys. Lett. 102 073501
[23]Yan D W, Lu H, Cao D, Chen D S, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 97 153503
[24]Meneghini M, Ronchi N, Stocco A, Meneghesso G, Mishra U K, Pei Y and Zanoni E 2011 IEEE Trans. Electron Devices 58 2996
[25]Cardwell D W, Sasikumar A, Arehart A R, Kaun S W, Lu J, Keller S, Speck J S, Mishra U K, Ringel S A and Pelz J P 2013 Appl. Phys. Lett. 102 193509
[26]Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560
[27]Liu S, Yang S, Tang Z K, Jiang Q M, Liu C, Wang M J, Shen B and Chen K J 2015 Appl. Phys. Lett. 106 051605
[28]Lu B and Palacios T 2010 IEEE Electron Device Lett. 31 951
[29]Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2003 IEEE Trans. Electron Devices 50 2015
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 117303
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 117303
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 117303
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 117303
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 117303
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 117303
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 117303
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 117303
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 117303
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 117303
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 117303
[12] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 117303
[13] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 117303
[14] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 117303
[15] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 117303
Viewed
Full text


Abstract