Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 108501    DOI: 10.1088/0256-307X/33/10/108501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Rectification of Ion Current Determined by the Nanopore Geometry: Experiments and Modelling
Da-Ming Zhou1†, Yun-Sheng Deng1†, Cui-Feng Ying1,2, Yue-Chuan Zhang1,3, Yan-Xiao Feng1, Qi-Meng Huang1, Li-Yuan Liang1, De-Qiang Wang1**
1Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714
2Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Tianjin 300071
3University of Electronic Science and Technology of China, Chengdu 611731
Cite this article:   
Da-Ming Zhou, Yun-Sheng Deng, Cui-Feng Ying et al  2016 Chin. Phys. Lett. 33 108501
Download: PDF(619KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We provide a way to precisely control the geometry of a SiN$_x$ nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiN$_x$ membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst–Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage ($I$–$V$) curves. For the conical pores with a pore size of 0.5–2 nm in diameter, the slope angles are around $-2.5^{\circ}$ to $-10^{\circ}$. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry $I$–$V$ transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded.
Received: 13 June 2016      Published: 27 October 2016
PACS:  85.35.-p (Nanoelectronic devices)  
  66.10.-x (Diffusion and ionic conduction in liquids)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61471336, 51503207 and 61504146, and the Joint-Scholar of West Light Foundation of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/108501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/108501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Da-Ming Zhou
Yun-Sheng Deng
Cui-Feng Ying
Yue-Chuan Zhang
Yan-Xiao Feng
Qi-Meng Huang
Li-Yuan Liang
De-Qiang Wang
[1]Fologea D, Ledden B, McNabb D S and Li J L 2007 Appl. Phys. Lett. 91 053901
[2]Dekker C 2007 Nat. Nanotechnol. 2 209
[3]Tang Z P, Lu B, Zhao Q, Wang J J, Luo K F and Yu D P 2014 Small 10 4332
[4]Gilboa T and Meller A 2015 Analyst 140 4733
[5]Tan S W, Gu D J, Liu H and Liu Q J 2016 Nanotechnology 27 155502
[6]Feng Y, Lee K, Farhat H and Kong J 2009 J. Appl. Phys. 106 104505
[7]Feng Y and Chen K 2015 Nanotechnology 26 035302
[8]Habermehl S, Apodaca R T and Kaplar R J 2009 Appl. Phys. Lett. 94 012905
[9]Yanagi I, Akahori R, Hatano T and Takeda K 2014 Sci. Rep. 4 5000
[10]Harold K, Kyle B and Vincent T C 2014 PLoS ONE 9 e92880
[11]Kuan Aaron T, Lu B, Xie P, Szalay T and Golovchenko J A 2015 Appl. Phys. Lett. 106 203109
[12]Queralt-Martín M, García-Giménez E, Aguilella V M, Ramírez P, Mafé S and Alcaraz A 2013 Appl. Phys. Lett. 103 043707
[13]Siwy Z, Gu Y, Spohr H A, Baur D, Wolf-Reber A, Spohr R, Apel P and Korchev Y E 2002 Europhys. Lett. 60 349
[14]Cervera J, Schiedt B, Neumann R, Mafé S and Ramírez P 2006 J. Chem. Phys. 124 104706
[15]Ramírez P, Apel P Y, Cervera J and Mafé S 2008 Nanotechnology 19 315707
[16]Nasir S, Ramírez P, Ali M, Ahmed I, Fruk L, Mafé S and Ensinger W 2013 J. Chem. Phys. 138 034709
[17]Gillespie D and Eisenberg R S 2001 Phys. Rev. E 63 061902
[18]Aguilella-Arzo M, García-Celma J J, Cervera J, Alcaraz A and Aguilella V M 2007 Bioelectrochemistry 70 320
[19]Misakian M and Kasianowicz J J 2003 J. Membr. Biol. 195 137
[20]Bhattacharya S, Muzard J, Payet L, Mathé J, Bockelmann U, Aksimentiev A and Viasnoff V 2011 J. Phys. Chem. C 115 4255
[21]Payet L, Martinho M, Merstorf C, Pastoriza-Gallego M, Pelta J, Viasnoff V, Auvray L, Muthukumar M and Mathé J 2015 Biophys. J. 109 1600
[22]Manzanares J A, Mafé S and Pellicer J 1992 J. Chem. Soc. Faraday Trans. 88 2355
[23]Smeets R M M, Keyser U F, Krapf D, Wu M Y, Dekker N H and Dekker C 2006 Nano Lett. 6 89
[24]Hoogerheide D P, Garaj S and Golovchenko J A 2009 Phys. Rev. Lett. 102 256804
Related articles from Frontiers Journals
[1] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 108501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 108501
[3] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 108501
[4] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 108501
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 108501
[6] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 108501
[7] SHU Yi, TIAN He, WANG Zhe, ZHAO Hai-Ming, MI Wen-Tian, LI Yu-Xing, CAO Hui-Wen, REN Tian-Ling. Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film[J]. Chin. Phys. Lett., 2015, 32(11): 108501
[8] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 108501
[9] ZHOU Ju-Mei, GAO Xiao-Hong, ZHANG Hong-Liang. Lateral-Coupled Junctionless IZO-Based Electric-Double-Layer Thin-Film Transistors Gated by Solid-State Phosphosilicate Glass Electrolyte[J]. Chin. Phys. Lett., 2015, 32(03): 108501
[10] WU Guo-Dong, ZHANG Jin, WAN Xiang. Junctionless Coplanar-Gate Oxide-Based Thin-Film Transistors Gated by Al2O3 Proton Conducting Films on Paper Substrates[J]. Chin. Phys. Lett., 2014, 31(10): 108501
[11] ZHANG Jin, WU Guo-Dong. Ultralow-Voltage Electric-Double-Layer Oxide-Based Thin-Film Transistors with Faster Switching Response on Flexible Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 108501
[12] TANG Shi-Yu, LI Run, OU Xin, XU Han-Ni, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. TixSb2Te Thin Films for Phase Change Memory Applications[J]. Chin. Phys. Lett., 2014, 31(07): 108501
[13] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 108501
[14] LI Run, TANG Shi-Yu, BAI Gang, YIN Qiao-Nan, LAN Xue-Xin, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. GeTe4 as a Candidate for Phase Change Memory Application[J]. Chin. Phys. Lett., 2013, 30(5): 108501
[15] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 108501
Viewed
Full text


Abstract