Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 107802    DOI: 10.1088/0256-307X/33/10/107802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning of the Electron Spin Relaxation Anisotropy via Optical Gating in GaAs/AlGaAs Quantum Wells
Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni, Zhi-Chuan Niu, Xin-Hui Zhang**
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni et al  2016 Chin. Phys. Lett. 33 107802
Download: PDF(850KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density. Moreover, the relative strength of the Rashba and the Dresselhaus spin–orbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532 nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.
Received: 13 July 2016      Published: 27 October 2016
PACS:  78.47.js (Free polarization decay)  
  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
Fund: Supported by the National Natural Science Foundation Program of China under Grant Nos 11274302, 11474276 and 61290303.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/107802       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/107802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing-Hui Niu
Teng-Fei Yan
Hai-Qiao Ni
Zhi-Chuan Niu
Xin-Hui Zhang
[1]Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2]Dyakonov M I 2008 Spin Physics in Semiconductors 1st edn (New York: Springer)
[3]?uti? I and Sarma D 2004 Rev. Mod. Phys. 76 323
[4]Fabian J, Matos-Abiague A, Ertler C, Stano P and ?uti? I 2007 Acta Phys. Slovaca 57 565
[5]Wu M W, Jiang J H and Weng M Q 2010 Phys. Rep. 493 61
[6]Dyakonov M I and Kachorovskii V Y 1986 Sov. Phys. Semicond. 20 110
[7]Dresselhaus G 1955 Phys. Rev. 100 580
[8]Korn T 2010 Phys. Rep. 494 415
[9]Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[10]Averkiev N S and Golub L E 1999 Phys. Rev. B 60 15582
[11]Averkiev N S, Golub L E, Gurevich A S, Evtikhiev V P, Kochereshko V P, Platonov A V, Shkolnik A S and Efimov Y P 2006 Phys. Rev. B 74 033305
[12]Larionov A V and Golub L E 2008 Phys. Rev. B 78 033302
[13]Gerlovin I Y, Efimov Y P, Dolgikh Y K, Eliseev S A, Ovsyanking V V and Petrov V V 2007 Phys. Rev. B 75 115330
[14]Eldridge P S, Hubner J, Oertel S, Harley R T, Henini M and Oestreich M 2011 Phys. Rev. B 83 041301
[15]Kainz J, Rossler U and Wrinkler R 2003 Phys. Rev. B 68 075322
[16]Lu J P, Yau J B, Shukla S P, Shayegan M, Wissinger L, Rossler U and Winkler R 1998 Phys. Rev. Lett. 81 1282
[17]Koga T, Nitta J, Akazaki T and Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[18]Averkiev N S, Golub L E and Willander M 2002 Semiconductors 36 91
[19]Averkiev N S, Golub L E and Willander M 2002 J. Phys.: Condens. Matter 14 R271
[20]Golub L E, Averkiev N S and Willander M 2000 Nanotechnology 11 215
[21]Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[22]Teng L H, Zhang P, Lai T S and Wu M W 2008 Europhys. Lett. 84 27006
[23]Ma H, Jin Z M, Ma G H, Liu W M and Tang S H 2009 Appl. Phys. Lett. 94 241112
[24]Jiang J H, Cheng J L and Wu M W 2007 Phys. Rev. B 75 045305
[25]Zhang P and Wu M W 2009 Phys. Rev. B 80 155311
[26]Lü C and Cheng J L 2009 Semicond. Sci. Technol. 24 115010
[27]Shen K 2009 Chin. Phys. Lett. 26 067201
[28]Krau? M, Schneider H C, Bratschitsch R, Chen Z and Cundiff S T 2010 Phys. Rev. B 81 035213
Viewed
Full text


Abstract