Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 103201    DOI: 10.1088/0256-307X/33/10/103201
ATOMIC AND MOLECULAR PHYSICS |
Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM
Qiang Wang1,2**, Yi-Ge Lin1, Fei Meng1,3, Ye Li1,2, Bai-Ke Lin1,2, Er-Jun Zang1, Tian-Chu Li1, Zhan-Jun Fang1
1National Institute of Metrology, Beijing 100029
2Department of Precision Instrument, Tsinghua University, Beijing 100084
3School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
Cite this article:   
Qiang Wang, Yi-Ge Lin, Fei Meng et al  2016 Chin. Phys. Lett. 33 103201
Download: PDF(381KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on the magic wavelength measurement of our optical lattice clock based on fermion strontium atoms at the National Institute of Metrology (NIM). A Ti:sapphire solid state laser locked to a reference cavity inside a temperature-stabilized vacuum chamber is employed to generate the optical lattice. The laser frequency is measured by an erbium fiber frequency comb. The trap depth is modulated by varying the lattice laser power via an acousto-optic modulator. We obtain the frequency shift coefficient at this lattice wavelength by measuring the differential frequency shift of the clock transition of the strontium atoms at different trap depths, and the frequency shift coefficient at this lattice wavelength is obtained. We measure the frequency shift coefficients at different lattice frequencies around the magic wavelength and linearly fit the measurement data, and the magic wavelength is calculated to be 368554672(44) MHz.
Received: 26 April 2016      Published: 27 October 2016
PACS:  32.60.+i (Zeeman and Stark effects)  
  37.10.Jk (Atoms in optical lattices)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  45.50.Tn (Collisions)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 91336212.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/103201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/103201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang Wang
Yi-Ge Lin
Fei Meng
Ye Li
Bai-Ke Lin
Er-Jun Zang
Tian-Chu Li
Zhan-Jun Fang
[1]Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[2]Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[3]Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mcnally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[4]Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[5]Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M, Swallows M D, Campbell S L and Ye J 2012 Phys. Rev. Lett. 109 230801
[6]Katori H 2002 Proc. 6th Symposium on Frequency Standards and Metrology (Singapore) p 323
[7]Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001
[8]Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
[9]Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
[10]Brusch A, Le Target R, Baillard X, Mathilde F and Lemonde P 2006 Phys. Rev. Lett. 96 103003
[11]Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L and Hoyt C W 2008 Phys. Rev. Lett. 100 103002
[12]Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J and Lemonde P 2011 Phys. Rev. Lett. 106 210801
[13]Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409
[14]Campbell G K, Ludlow A D, Blatt S, Thomsen J W, Martin M J, de Miranda M H G, Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner T, Parker T E and Jefferts S R 2008 Metrologia 45 539
[15]Wang Q, Lin Y G, Li Y, Lin B K, Meng F, Zang E J, Li T C and Fang Z J 2014 Chin. Phys. Lett. 31 123201
[16]Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[17]Gibble K 2009 Phys. Rev. Lett. 103 113202
[18]Leo P J, Julienne P S, Mies F H and Williams C J 2001 Phys. Rev. Lett. 86 3743
Related articles from Frontiers Journals
[1] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 103201
[2] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 103201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 103201
[4] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 103201
[5] Kai Chen, Zheng Hu, Qing-Hui Wang, Xiao-Hua Yang. Zeeman Effect of the Rovibronic Ground State of I$^{35}$Cl at Hyperfine Level[J]. Chin. Phys. Lett., 2017, 34(10): 103201
[6] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 103201
[7] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 103201
[8] YANG Hai-Feng, GAO Wei, CHENG Hong, LIU Hong-Ping. Electron Dynamics of Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(10): 103201
[9] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 103201
[10] ZHAO Yun-Hui, PAN Yi-Qing, LI Wen-Juan, DENG Xia, HAI Wen-Hua. Variational-Integral Perturbation Corrections for Hydrogen Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2013, 30(1): 103201
[11] WANG Yuan-Sheng, XIA Chang-Long, GUO Jing**, LIU Xue-Shen** . Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse[J]. Chin. Phys. Lett., 2011, 28(8): 103201
[12] YU Geng-Hua, , ZHONG Jia-Qi, , LI Run-Bing, WANG Jin, ZHAN Ming-Sheng, ** . Magic Wavelength of an Optical Clock Transition of Barium[J]. Chin. Phys. Lett., 2011, 28(7): 103201
[13] LI Guo-Hui, XU Xin-Ye** . Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 103201
[14] HAN Shun-Li, CHENG Bing, ZHANG Jing-Fang, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. Polarization Gradient Cooling by Zeeman-Effect-Assisted Saturated Absorption[J]. Chin. Phys. Lett., 2009, 26(12): 103201
[15] WANG De-Hua, HUANG Kai-Yun. Coherent Control of Photodetachment of H- in Perpendicular Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2009, 26(9): 103201
Viewed
Full text


Abstract