Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 017201    DOI: 10.1088/0256-307X/33/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor
Sedighe Salimian**, Mohammad Esmaeil Azim Araghi
Faculty of Physics, Kharazmi University, Tehran, Iran
Cite this article:   
Sedighe Salimian, Mohammad Esmaeil Azim Araghi 2016 Chin. Phys. Lett. 33 017201
Download: PDF(1126KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The temperature-dependent effect of residual charge carrier ($n_{0})$, at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7 nm TiO$_{2}$ as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of 900 cm$^{2}$/V$\cdot$s at room temperature and it decreases to 45 cm$^{2}$/V$\cdot$s for 20 K due to the increase of $n_{0}$. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.
Received: 07 October 2015      Published: 29 January 2016
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.40.Cg (Contact resistance, contact potential)  
  73.40.Sx (Metal-semiconductor-metal structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/017201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/017201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sedighe Salimian
Mohammad Esmaeil Azim Araghi
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Lin M W, Ling C, Zhang Y, Yoon H J, Cheng M M C, Agapito L A, Kioussis N, Widjaja N and Zhou Z 2011 Nanotechnology 22 265201
[3] He Z Z, Yang K W, Yu C, Li J, Liu Q B et al 2015 Chin. Phys. Lett. 32 117204
[4] Smith A D, Vaziri S, Rodriguez S, ?stling M and Lemme M C 2015 Solid-State Electron. 108 61
[5] Yu W J and Duan X 2013 Sci. Rep. 3 1248
[6] Cavallo F, Delgado R R, Kelly M M, Sánchez Pérez J R, Schroeder D P, Grace Xing H, Eriksson M A and Lagally M G 2014 ACS Nano 8 10237
[7] Perreault F, Fonseca de Faria A and Elimelech M 2015 Chem. Soc. Rev. 44 5861
[8] Nagashio K, Yamashita T, Nishimura T, Kita K and Toriumi A 2011 J. Appl. Phys. 110 024513
[9] Lv H, Wu H, Liu J, Yu J, Niu J, Li J, Xu Q, Wu X and Qian H 2013 Appl. Phys. Lett. 103 193102
[10] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[11] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[12] Geim A K 2009 Science 324 1530
[13] Vaziri S, Belete M, Dentoni Litta E, Smith A D, Lupina G, Lemme M C and ?stling M 2015 Nanoscale 7 13096
[14] Schwierz F 2010 Nat. Nanotechnol. 5 487
[15] Babaee T S and Pourfath M 2013 Appl. Phys. Lett. 103 143506
[16] Venugopal A, Chan J, Li X, Magnuson C W, Kirk W P, Colombo L, Ruoff R S and Vogel E M 2011 J. Appl. Phys. 109 104511
[17] Negishi R, Ohno Y, Maehashi K, Matsumoto K and Kobayashi Y 2012 Jpn. J. Appl. Phys. 51 06FD03
[18] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[19] Zhong H, Zhang Z, Xu H, Qiu C and Peng L M 2015 AIP Adv. 5 057136
[20] Aoki H and Dresselhaus M S 2014 Physics of Graphene (London: Springer) chap 3 p 84
[21] Zhang Z, Xu H, Zhong H and Peng L M 2012 Appl. Phys. Lett. 101 213103
[22] Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 IEEE Electron Device Lett. 28 282
[23] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[24] De Arco L G, Zhang Y, Kumar A and Zhou C 2009 IEEE Trans. Nanotechnol. 8 135
[25] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S, Song Y I, Hong B H and Ahn J H 2010 Nano Lett. 10 490
[26] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[27] Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K and Chiu P W 2011 ACS Nano 5 2362
[28] Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z and Kong J 2008 J. Phys. Chem. C 112 17741
[29] Zhang Y, Mendez E E and Du X 2011 ACS Nano 5 8124
[30] Wang D and Shi J 2011 Phys. Rev. B 83 113403
[31] Deen D A, Champlain J G and Koester S J 2013 Appl. Phys. Lett. 103 073504
[32] Khoshnevis S, Dariani R S, Azim-Araghi M E, Bayindir Z and Robbie K 2006 Thin Solid Films 515 2650
[33] Lu G, Ocola L E and Chen J 2009 Adv. Mater. 21 2487
[34] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 017201
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 017201
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 017201
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 017201
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 017201
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 017201
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 017201
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 017201
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 017201
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 017201
[11] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 017201
[12] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 017201
[13] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 017201
[14] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 017201
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 017201
Viewed
Full text


Abstract