Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 012502    DOI: 10.1088/0256-307X/33/1/012502
NUCLEAR PHYSICS |
Geometric Scaling Analysis of Deep Inelastic Scattering Data Including Heavy Quarks
Qing-Dong Wu1, Ji Zeng1, Yuan-Yuan Hu1, Quan-Bo Li1, Dai-Cui Zhou2, Wen-Chang Xiang1,2**
1College of Physics and Electronics Science, Guizhou Normal University, Guiyang 550001
2Institute of Particle Physics, Huazhong Normal University, Wuhan 430079
Cite this article:   
Qing-Dong Wu, Ji Zeng, Yuan-Yuan Hu et al  2016 Chin. Phys. Lett. 33 012502
Download: PDF(560KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An analytic massive total cross section of photon–proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function $F_2$ measured in lepton–hadron scattering experiments at small values of Bjorken $x$. It is shown that the descriptions of the inclusive structure function $F_2$ and longitudinal structure function $F_{\rm L}$ are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton–hadron cross section, which plays a significant role in the description of the photoproduction region.

Received: 22 August 2015      Published: 29 January 2016
PACS:  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
  13.60.-r (Photon and charged-lepton interactions with hadrons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/012502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/012502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing-Dong Wu
Ji Zeng
Yuan-Yuan Hu
Quan-Bo Li
Dai-Cui Zhou
Wen-Chang Xiang

[1] Kovchegov Y V 1999 Phys. Rev. D 60 034008
     Kovchegov Y V 2000 Phys. Rev. D 61 074018
[2] Balitsky I 1996 Nucl. Phys. B 463 99
     Balitsky I 2001 Phys. Lett. B 518 235
[3] Golec-Biernat K and Wüsthoff M 1998 Phys. Rev. D 59 014017
[4] Golec-Biernat K and Wüsthoff M 1999 Phys. Rev. D 60 114023
[5] Stasto A, Golec-Biernat K and Kwiecinski J 2001 Phys. Rev. Lett. 86 596
[6] Caola F et al 2010 Phys. Lett. B 686 127
[7] Altarelli G et al 2000 Nucl. Phys. B 575 313
[8] Ciafaloni M et al 2003 Phys. Rev. D 68 114003
[9] Iancu E, Itakura K and Munier S 2004 Phys. Lett. B 590 199
[10] Xiang W C 2010 Eur. Phys. J. A 46 91
[11] Kozlov M, Shoshi A and Xiang W C 2007 J. High Energy Phys. 0710 20
[12] Albacete J L, Armesto N, Milhano J G and Salgado C A 2009 Phys. Rev. D 80 034031
[13] Gribov L V, Levin E M and Ryskin M G 1983 Phys. Rep. 100 1
[14] Mueller A H and Qiu J W 1986 Nucl. Phys. B 268 427
[15] Zhu W 1999 Nucl. Phys. B 551 245
       Zhu W and Ruan J H 1999 Nucl. Phys. B 559 378
       Zhu W, Shen Z Q and Ruan J H 2004 Nucl. Phys. B 692 417
[16] Hu Y Y, Zeng J, Zhou F C, Zhou D C and Xiang W C 2015 Eur. Phys. J. A (accepted)
[17] Mueller A H 1990 Nucl. Phys. B 335 115
[18] Nikolaev N N and Zakharov B G 1991 Z. Phys. C 49 607
[19] Marquet C and Schoeffel L 2006 Phys. Lett. B 639 471
[20] Albacete J L, Armesto N, Milhano J G, Quiroga P and Salgado C A 2011 Eur. Phys. J. C 71 1705
[21] Aaron F D et al 2010 J. High Energy Phys. 1001 109
[22] Olive K A et al 2014 Chin. Phys. C 38 090001
[23] Triantafyllopoulos D N 2003 Nucl. Phys. B 648 293
[24] Aaron F D et al 2009 Eur. Phys. J. C 63 625
[25] Aaron F D et al 2009 Eur. Phys. J. C 64 561
[26] Aaron F D et al 2011 Eur. Phys. J. C 71 1579
[27] Andreev V et al 2014 Eur. Phys. J. C 74 2814
[28] Iancu E, Madrigal J D, Mueller A H, Soyez G and Triantafyllopoulos D N 2015 arXiv:1507.03651[hep-ph]
[29] Xiang W C 2009 Phys. Rev. D 79 014012
[30] Xiang W C 2010 Phys. Rev. D 81 094004

Related articles from Frontiers Journals
[1] Lei Wang, Jin-Wen Kang, Qing Zhang, Shuwan Shen, Wei Dai, Ben-Wei Zhang, and Enke Wang. Jet Radius and Momentum Splitting Fraction with Dynamical Grooming in Heavy-Ion Collisions[J]. Chin. Phys. Lett., 2023, 40(3): 012502
[2] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 012502
[3] Yan-Bing Cai, Yi Yang, Dai-Cui Zhou, Wen-Chang Xiang. Exclusive Charmonium Photo-Production at HERA and LHC with Color Glass Condensate[J]. Chin. Phys. Lett., 2017, 34(12): 012502
[4] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 012502
[5] Jun-Sheng Li, Ying-Hua Dang, Dong-Hai Zhang, Jin-Xia Cheng, S. Kodaira, N. Yasuda. Charge-Changing Cross Sections of 736AMeV $^{28}$Si on Carbon Targets[J]. Chin. Phys. Lett., 2017, 34(10): 012502
[6] Zhen-Yu Xu, Jian-Li Liu, Pan-Pan Zhang, Jing-Bo Zhang, Lei Huo. Elliptic Flow Splitting between Particles and their Antiparticles in Au+Au Collisions from a Multiphase Transport Model[J]. Chin. Phys. Lett., 2017, 34(6): 012502
[7] Zhi-Jin Jiang, Jia-Qi Hui, Hai-Ping Deng. Unified Hydrodynamics and Pseudorapidity Distributions of Charged Particles Produced in Heavy Ion Collisions at Low Energies at RHIC[J]. Chin. Phys. Lett., 2017, 34(5): 012502
[8] Wen-Chang Xiang, Zhi-Hai Hu, Wan-Song Liu, Jun-Jin Peng, Shao-Hong Cai. Analysis of the Diffractive Deep Inelastic Scattering Data with Running Coupling and Gluon Number Fluctuations[J]. Chin. Phys. Lett., 2016, 33(08): 012502
[9] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 012502
[10] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 012502
[11] ZHOU Xiao-Jiao, QI Lian, KANG Lin, ZHOU Dai-Cui, XIANG Wen-Chang. Geometric Scaling in New Combined Hadron-Electron Ring Accelerator Data[J]. Chin. Phys. Lett., 2014, 31(10): 012502
[12] ZHOU Feng-Chu, CAI Xu, ZHOU Dai-Cui. A Toy Model for Estimation of the Event Plane Non-Flat Effect on an Elliptic Flow in Heavy Ion Collision[J]. Chin. Phys. Lett., 2014, 31(07): 012502
[13] HU Jin-Bi, SHANG Lun-Hua, SONG Xiao-Shu, CHEN Shi-Guo, ZHOU Dai-Cui, XIANG Wen-Chang. Analytic Study of with the New Combined Data from Color Glass Condensate[J]. Chin. Phys. Lett., 2014, 31(03): 012502
[14] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 012502
[15] XIANG Wen-Chang, ZHANG Jun-Jie, CHEN Shi-Guo, LIU Wan-Song, ZHOU Dai-Cui. Charged Hadron Multiplicity at RHIC and LHC Energies from Color Glass Condensate[J]. Chin. Phys. Lett., 2013, 30(8): 012502
Viewed
Full text


Abstract