Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 097804    DOI: 10.1088/0256-307X/32/9/097804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of High-Temperature Annealing on Yellow and Blue Luminescence of Undoped GaN
CHAI Xu-Zhao, ZHOU Dong, LIU Bin, XIE Zi-Li, HAN Ping**, XIU Xiang-Qian, CHEN Peng, LU Hai, ZHANG Rong, ZHENG You-Dou
School of Electronic Science and Engineering, National Laboratory of Solid State Microstructure, and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093
Cite this article:   
CHAI Xu-Zhao, ZHOU Dong, LIU Bin et al  2015 Chin. Phys. Lett. 32 097804
Download: PDF(698KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investigated by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edge emission in the GaN apparently increases, and the yellow luminescence (YL) and blue luminescence (BL) bands dramatically decrease after annealing at 700°C. At the annealing temperature higher than 900°C, the YL and BL intensities show an enhancement for the nitrogen annealed GaN. This fact should be attributed to the increment of the Ga and N vacancies in the GaN decomposition. However, the integrated PL intensity of the oxygen annealed GaN decreases at the temperature ranging from 900°C to 1000°C. This results from the capture of many photo-generated holes by high-density surface states. XPS characterization confirms that the high-density surface states mainly originate from the incorporation of oxygen atoms into GaN at the high annealing temperature, and even induces the 0.34 eV increment of the upward band bending for the oxygen annealed GaN at 1000°C.
Received: 26 June 2015      Published: 02 October 2015
PACS:  78.66.Fd (III-V semiconductors)  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/097804       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/097804
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHAI Xu-Zhao
ZHOU Dong
LIU Bin
XIE Zi-Li
HAN Ping
XIU Xiang-Qian
CHEN Peng
LU Hai
ZHANG Rong
ZHENG You-Dou
[1] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[2] Ponce F A and Bour D P 1997 Nature 386 351
[3] Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 69 503
[4] Reshchikov M A and Morko? H 2005 J. Appl. Phys. 97 061301
[5] Demchenko D O and Reshchikov M A 2013 Phys. Rev. B 88 115204
[6] Hou Q F, Wang X L, Xiao H L, Wang C M, Yang C B, Yin H B, Li J M and Wang Z G 2011 Chin. Phys. Lett. 28 037102
[7] Zhao D G, Jiang D S, Zhu J J, Liu Z S, Zhang S M, Liang J W and Yang H 2007 J. Appl. Phys. 102 113521
[8] Li G, Chua S J, Xu S J, Wang W, Li P, Beaumont B and Gibart P 1999 Appl. Phys. Lett. 74 2821
[9] Suresh S, Lourdudoss S, Landgren G and Baskar K 2010 J. Cryst. Growth 312 3151
[10] Fang Z L, Li S P, Li J C, Sun H Z, Wang S J and Kang J Y 2008 Thin Solid Films 516 6344
[11] Zhu C F, Fong W K, Leung B H, Cheng C C and Surya C 2001 IEEE Trans. Electron Devices 48 1225
[12] Li X B, Sun D Z, Zhang J P, Kong M Y and Yoon S F 1998 Appl. Phys. Lett. 72 936
[13] Huang H Y, Xiao J Q, Ku C S, Chuang H M, Chen W K, Chen W H, Lee M C and Lee H Y 2002 J. Appl. Phys. 92 4129
[14] Lin M E, Sverdlov B N and Morko? H 1993 Appl. Phys. Lett. 63 3625
[15] Hayes J M, Kuball M, Bell A, Harrison I, Korakakis D and Foxon C T 1999 Appl. Phys. Lett. 75 2097
[16] Lee D G, Wakamatsu R, Koizumi A, Terai Y, Poplawsky J D, Dierolf V and Fujiwara Y 2013 Appl. Phys. Lett. 102 141904
[17] Rana M A, Osipowicz T, Choi H W, Breese M B H, Watt F and Chua S J 2003 Appl. Phys. A 77 103
[18] Chand N, People R, Baiocchi F A, Wecht K W and Cho A Y 1986 Appl. Phys. Lett. 49 815
[19] Yamaguchi M, Tachikawa M, Itoh Y, Sugo M and Kondo S 1990 J. Appl. Phys. 68 4518
[20] Elsner J, Jones R, Sitch P K, Haugk M, Frauenheim T, Heggie M, ?berg S and Briddon P R 1998 Phys. Rev. B 58 12571
[21] Duan T L, Pan J S and Ang D S 2013 Appl. Phys. Lett. 102 201604
[22] Wu C I, Kahn A, Taskar N, Dorman D and Gallagher D 1998 J. Appl. Phys. 83 4249
[23] Garcia M A, Wolter S D, Kim T H, Choi S, Baier J, Brown A, Losurdo M and Bruno G 2006 Appl. Phys. Lett. 88 013506
[24] Bermudez V M 2002 Surf. Sci. 499 124
[25] Hashizume T, Ootomo S, Oyama S, Konishi M and Hasegawa H 2001 J. Vac. Sci. Technol. B 19 1675
Related articles from Frontiers Journals
[1] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 097804
[2] Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni, Zhi-Chuan Niu, Xin-Hui Zhang. Tuning of the Electron Spin Relaxation Anisotropy via Optical Gating in GaAs/AlGaAs Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(10): 097804
[3] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 097804
[4] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 097804
[5] HE Su-Ming, LUO Xiang-Dong, ZHANG Bo, FU Lei, CHENG Li-Wen, WANG Jin-Bin, LU Wei. An Improvement on the Junction Temperature Measurement of Light-Emitting Diodes by using the Peak Shift Method Compared with the Forward Voltage Method[J]. Chin. Phys. Lett., 2012, 29(12): 097804
[6] DING Yu, LIU Bin, TAO Tao, LI Yi, ZHANG Zhao, ZHANG Rong, XIE Zi-Li, ZHAO Hong, GU Shu-Lin, LV Peng, ZHU Shi-Ning, ZHENG You-Dou. In-Plane Optical Anisotropy of a-Plane GaN Film on r-Plane Sapphire Grown by Metal Organic Chemical vapour Deposition[J]. Chin. Phys. Lett., 2012, 29(10): 097804
[7] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 097804
[8] ZHENG Ji-Yuan, WANG Lai, HAO Zhi-Biao, LUO Yi, WANG Lan-Xi, CHEN Xue-Kang. A GaN p–i–p–i–n Ultraviolet Avalanche Photodiode[J]. Chin. Phys. Lett., 2012, 29(9): 097804
[9] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Enhanced Light Output of InGaN-Based Light Emitting Diodes with Roughed p-Type GaN Surface by Using Ni Nanoporous Template[J]. Chin. Phys. Lett., 2012, 29(9): 097804
[10] TENG Long, ZHANG Rong, XIE Zi-Li, TAO Tao, ZHANG Zhao, LI Ye-Cao, LIU Bin, CHEN Peng, HAN Ping, ZHENG You-Dou. Raman Scattering Study of InxGa1−xN Alloys with Low Indium Compositions[J]. Chin. Phys. Lett., 2012, 29(2): 097804
[11] WANG Fei, **, ZHANG Xin-Liang, YU Yu, XU En-Ming . Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter[J]. Chin. Phys. Lett., 2011, 28(6): 097804
[12] GAO Bo**, LIU Hong-Xia, WANG Shu-Long . AlGaN/GaN Ultraviolet Detector with Dual Band Response[J]. Chin. Phys. Lett., 2011, 28(5): 097804
[13] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 097804
[14] WANG Hai-Li, XIONG Yong-Hua, HUANG She-Song, NI Hai-Qiao, HE Zhen-Hong, DOU Xiu-Ming, NIU Zhi-Chuan. Photoluminescence of Charged Low-Density InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2009, 26(10): 097804
[15] LU Hui-Min, CHEN Gen-Xiang, JIAN Shui-Sheng. Design of Phosphor-Free Single-Chip White Light-Emitting Diodes Using InAlGaN Irregular Multiple Quantum Well Structures[J]. Chin. Phys. Lett., 2009, 26(8): 097804
Viewed
Full text


Abstract