Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 096201    DOI: 10.1088/0256-307X/32/9/096201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Urtra-Hard Bonds in P-Carbon Stronger than Diamond
GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming**
Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004
Cite this article:   
GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping et al  2015 Chin. Phys. Lett. 32 096201
Download: PDF(592KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hardness and ideal strength of P-carbon, i.e., a new carbon phase for the cold-compressed carbon with an orthogonal structure recently proposed and named as P-carbon, are investigated by means of first-principles calculations. The strength calculations reveal that the failure mode in P-carbon is dominated by the tensile type. The ideal tensile strength of P-carbon is calculated to be 76.7 GPa in the [001] direction, which is higher than that of the previously known most stable Z-carbon, of 71.4 GPa. Meanwhile, the theoretical Vickers hardness of P-carbon is estimated as 89 GPa, which is comparable with that of diamond. Especially, two types of bonds in P-carbon with hardness values of 114 GPa and 105 GPa are significantly stronger than those of diamond. The results provide insight into exploration of the ultra-hard P-carbon for potentially technological applications.
Received: 19 May 2015      Published: 02 October 2015
PACS:  62.20.-x (Mechanical properties of solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/096201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/096201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Wen-Feng
WANG Ling-Sheng
LI Zhi-Ping
XIA Mei-Rong
GAO Fa-Ming
[1] Miller E D, Nesting D C and Badding J V 1997 Chem. Mater. 9 18
[2] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[3] Mao W L, Mao H K, Eng P J, Trainor T P, Newville M, Kao C C, Heinz D L, Shu J, Meng Y and Hemley R J 2003 Science 302 425
[4] Kumar R S, Pravica M G, Cornelius A L, Nicol M F, Hu M Y and Chow P C 2007 Diamond Relat. Mater. 16 1250
[5] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[6] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[7] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[8] Goedecker S 2004 J. Chem. Phys. 120 9911
[9] Li Q, Ma Y M, Oganov A R, Wang H B, Wang H, Xu Y, Cui T, Mao H K and Zou G T 2009 Phys. Rev. Lett. 102 175506
[10] Umemoto K, Wentzcovitch R M, Saito S and Miyake T 2010 Phys. Rev. Lett. 104 125504
[11] Wang J T, Chen C F and Kawazoe Y 2011 Phys. Rev. Lett. 106 075501
[12] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhès S, Willand A, Caliste D, Botti S, San Miguel A, Goedecker S and Marques M A L 2012 Phys. Rev. Lett. 108 065501
[13] Niu H Y, Chen X Q, Wang S B, Li D Z, Mao W L and Li Y Y 2012 Phys. Rev. Lett. 108 135501
[14] Zhao Z S, Xu B, Zhou X F, Wang L M, Wen B, He J L, Liu Z Y, Wang H T and Tian Y J 2011 Phys. Rev. Lett. 107 215502
[15] Wang Z W, Zhao Y S, Tait K, Liao X Z, Schiferl D, Zha C S, Downs R T, Qian J, Zhu Y T and Shen T D 2004 Proc. Natl. Acad. Sci. U.S.A. 101 13699
[16] Li Z P and Gao F M 2012 Phys. Chem. Chem. Phys. 14 869
[17] Li Z P, Gao F M and Xu Z M 2012 Phys. Rev. B 85 144115
[18] Li Z P, Gao F M and Xu Z M 2012 Comput. Mater. Sci. 62 55
[19] Gao F M, Zhang J C and Li Z P 2014 RSC Adv. 4 32345
[20] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing R C and Lian J 2012 Appl. Phys. Lett. 100 111907
[21] Gou H Y, Li Z P, Wang L M, Lian J and Wang Y C 2012 AIP Adv. 2 012171
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115
[26] Zhang R F, Veprek S and Argon A S 2008 Phys. Rev. B 77 172103
[27] Yang J, Sun H and Chen C F 2008 J. Am. Chem. Soc. 130 7200
[28] Chen X Q, Fu C L and Podloucky R 2008 Phys. Rev. B 77 064103
[29] Chen S Y, Gong X G and Wei S H 2007 Phys. Rev. Lett. 98 015502
[30] Gao F M, Xu R and Liu K 2005 Phys. Rev. B 71 052103
[31] Gao F M 2006 Phys. Rev. B 73 132104
[32] Gutiérrez G, Menéndez-Proupin E and Singh A K 2006 J. Appl. Phys. 99 103504
[33] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[34] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[35] Pugh S F 1954 Philos. Mag. A 45 823
[36] Gao F M and Gao L H 2010 J. Superhard Mater. 32 148
[37] Zhang M, Liu H Y, Du Y H, Zhang X X, Wang Y C and Li Q 2013 Phys. Chem. Chem. Phys. 15 14120
[38] He C Y, Sun L Z, Zhang C X, Peng X Y, Zhang K W and Zhong J X 2012 Solid State Commun. 152 1560
[39] Li D, Bao K, Tian F B, Zeng Z W, He Z, Liu B B and Cui T 2012 Phys. Chem. Chem. Phys. 14 4347
[40] Zhu Q, Zeng Q F and Oganov A R 2012 Phys. Rev. B 85 201407
[41] Wang J T, Chen C F and Kawazoe Y 2012 J. Chem. Phys. 137 024502
[42] Amsler M, Flores-Livas J A, Marques M A L, Botti S and Goedecker S 2013 Eur. Phys. J. B 86 383
[43] Tian F, Dong X, Zhao Z S, He J L and Wang H T 2012 J. Phys.: Condens. Matter 24 165504
[44] He C Y and Zhong J X 2014 Solid State Commun. 181 24
[45] Savin A, Nesper R, Wengert S and F ?ssler T F 1997 Angew. Chem. Int. Ed. Engl. 36 1808
[46] Zhang R F, Lin Z J and Veprek S 2011 Phys. Rev. B 83 155452
[47] McSkimin H J, Andreatch J P and Glynn P 1972 J. Appl. Phys. 43 985
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 096201
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 096201
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 096201
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 096201
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 096201
[6] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 096201
[7] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 096201
[8] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 096201
[9] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 096201
[10] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 096201
[11] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 096201
[12] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 096201
[13] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 096201
[14] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 096201
[15] SUN Qi-Cheng, ZHANG Guo-Hua, JIN Feng. The Stress Distribution in Polydisperse Granular Packings in Two Dimensions[J]. Chin. Phys. Lett., 2013, 30(2): 096201
Viewed
Full text


Abstract