Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 092501    DOI: 10.1088/0256-307X/32/9/092501
NUCLEAR PHYSICS |
Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas
Jiechen Xu1, Jinfeng Liao2,3**, Miklos Gyulassy1**
1Department of Physics, Columbia University, New York 10027, USA
2Physics Department and CEEM, Indiana University, Bloomington 47408, USA
3RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, New York 11973, USA
Download: PDF(654KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We utilize a new framework, CUJET3.0, to deduce the energy and temperature dependence of the jet transport parameter, q^ (E<10 GeV, T), from a combined analysis of available data on nuclear modification factor and azimuthal asymmetries from high energy nuclear collisions at RHIC/BNL and LHC/CERN. Extending a previous perturbative-QCD based jet energy loss model (known as CUJET2.0) with (2+1)D viscous hydrodynamic bulk evolution, this new framework includes three novel features of nonperturbative physics origin: (i) the Polyakov loop suppression of color-electric scattering (aka 'semi-QGP' of Pisarski et al.), (ii) the enhancement of jet scattering due to emergent magnetic monopoles near Tc (aka 'magnetic scenario' of Liao and Shuryak), and (iii) thermodynamic properties constrained by lattice QCD data. CUJET3.0 reduces to v2.0 at high temperatures T>400 MeV, while greatly enhances q^ near the QCD deconfinement transition temperature range. This enhancement accounts well for the observed elliptic harmonics of jets with pT>10 GeV. Extrapolating our data-constrained q^ down to thermal energy scales, E∼2 GeV, we find for the first time a remarkable consistency between high energy jet quenching and bulk perfect fluidity with η/s T3q^∼0.1 near Tc.

Received: 31 July 2015      Published: 02 October 2015
PACS:  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
  12.38.Mh (Quark-gluon plasma)  
  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
  13.87.-a (Jets in large-Q2 scattering)  
Cite this article:   
Jiechen Xu, Jinfeng Liao, Miklos Gyulassy 2015 Chin. Phys. Lett. 32 092501
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/092501       OR      http://cpl.iphy.ac.cn/Y2015/V32/I09/092501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiechen Xu
Jinfeng Liao
Miklos Gyulassy

[1] Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30
[2] Shuryak E V 2005 Nucl. Phys. A 750 64
[3] Muller B, Schukraft J and Wyslouch B 2012 Annu. Rev. Nucl. Part. Sci. 62 361
[4] Danielewicz P and Gyulassy M 1985 Phys. Rev. D 31 53
[5] Hirano T and Gyulassy M 2006 Nucl. Phys. A 769 71
[6] Majumder A, Muller B and Wang X N 2007 Phys. Rev. Lett. 99 192301
[7] Song H and Heinz W 2008 Phys. Rev. C 78 024902
[8] Shen C, Heinz U, Huovinen P and Song H 2010 Phys. Rev. C 82 054904
[9] Gale C, Jeon S, Schenke B, Tribedy P and Venugopalan R 2013 Phys. Rev. Lett. 110 012302
[10] Burke K M et al 2014 Phys. Rev. C 90 014909
[11] Baier R, Schiff D and Zakharov B 2000 Annu. Rev. Nucl. Part. Sci. 50 37
[12] Gyulassy M, Vitev I, Wang X N and Zhang B W 2003 arXiv:nucl-th/0302077
[13] Kovner A and Wiedemann U A 2003 arXiv:hep-ph/0304151
[14] Jacobs P and Wang X N 2005 Prog. Part. Nucl. Phys. 54 443
[15] Armesto N, Cole B, Gale C, Horowitz W A and Jacobs P 2012 Phys. Rev. C 86 064904
[16] Casalderrey-Solana J, Liu H, Mateos D, Rajagopal K and Wiedemann U A 2011 arXiv:1101.0618
[17] Horowitz W and Gyulassy M 2011 Nucl. Phys. A 872 265
[18] Zhang X and Liao J 2014 Phys. Rev. C 89 014907
[19] Zhang X and Liao J 2013 Phys. Rev. C 87 044910
[20] Liu H, Rajagopal K and Wiedemann U A J. High Energy Phys. 070703 066
[21] Hidaka Y and Pisarski R D 2008 Phys. Rev. D 78 071501
[22] Hidaka Y and Pisarski R D 2010 Phys. Rev. D 81 076002
[23] Dumitru A, Guo Y, Hidaka Y, Altes C P K and Pisarski R D 2011 Phys. Rev. D 83 034022
[24] Lin S, Pisarski R D and Skokov V V 2014 Phys. Lett. B 730 236
[25] Liao J and Shuryak E 2007 Phys. Rev. C 75 054907
[26] Liao J and Shuryak E 2008 Phys. Rev. Lett. 101 162302
[27] Liao J and Shuryak E 2012 Phys. Rev. Lett. 109 152001
[28] Renk T, Holopainen H, Heinz U and Shen C 2011 Phys. Rev. C 83 014910
[29] Bazavov A et al 2014 Phys. Rev. D 90 094503
[30] Bali G S 2001 Phys. Rep. 343 1
[31] Ripka G 2003 arXiv:hep-ph/0310102
[32] Kondo K I, Kato S, Shibata A and Shinohara T 2015 Phys. Rep. 579 1
[33] D'Alessandro A and D'Elia M 2008 Nucl. Phys. B 799 241
[34] D'Alessandro A, D'Elia M and Shuryak E V 2010 Phys. Rev. D 81 094501
[35] Bonati C and D'Elia M 2013 Nucl. Phys. B 877 233
[36] Chernodub M N and Zakharov V I 2007 Phys. Rev. Lett. 98 082002
[37] Betz B and Gyulassy M 2012 Phys. Rev. C 86 024903
[38] Gyulassy M, Vitev I and Wang X N 2001 Phys. Rev. Lett. 86 2537
[39] Jia J and Wei R 2010 Phys. Rev. C 82 024902
[40] Liao J and Shuryak E 2009 Phys. Rev. Lett. 102 202302
[41] Betz B and Gyulassy M 2013 arXiv:1305.6458[nucl-th]
[42] Betz B and Gyulassy M 2014 J. High Energy Phys. 1408 090 [Erratum-ibid. 2014 1410 043]
[43] Li D, Liao J and Huang M 2014 Phys. Rev. D 89 126006
[44] Xu J, Buzzatti A and Gyulassy M 2014 J. High Energy Phys. 1408 063
[45] Liu H, Rajagopal K and Wiedemann U A 2006 Phys. Rev. Lett. 97 182301
[46] Gyulassy M and Wang X N 1994 Nucl. Phys. B 420 583
[47] Gyulassy M Levai P and Vitev I 2001 Nucl. Phys. B 594 371
[48] Djordjevic M and Gyulassy M 2004 Nucl. Phys. A 733 265
[49] Buzzatti A and Gyulassy M 2012 Phys. Rev. Lett. 108 022301
[50] Buzzatti A and Gyulassy M 2013 Nucl. Phys. A 904 779c
[51] Djordjevic M and Heinz U W 2008 Phys. Rev. Lett. 101 022302
[52] Baier R, Mueller A and Schiff D 2007 Phys. Lett. B 649 147
[53] Renk T 2014 Phys. Rev. C 89 067901
[54] Peshier A 2006 arXiv:hep-ph/0601119
[55] Zakharov B 2008 JETP Lett. 88 781
[56] Randall L, Rattazzi R and Shuryak E V 1999 Phys. Rev. D 59 035005
[57] Bazavov A et al 2009 Phys. Rev. D 80 014504
[58] Borsanyi S et al 2010 J. High Energy Phys. 1009 073
[59] Nakamura A, Saito T and Sakai S 2004 Phys. Rev. D 69 014506
[60] Thoma M H and Gyulassy M 1991 Nucl. Phys. B 351 491
[61] Wang X N 2014 Private Communication
[62] Cacciari M, Nason P and Vogt R 2005 Phys. Rev. Lett. 95 122001
[63] Glauber R and Matthiae G 1970 Nucl. Phys. B 21 135
[64] Kniehl B A, Kramer G and Potter B 2000 Nucl. Phys. B 582 514
[65] Peterson C, Schlatter D, Schmitt I and Zerwas P M 1983 Phys. Rev. D 27 105
[66] Adare A et al 2008 Phys. Rev. Lett. 101 232301
[67] Adare A et al 2010 Phys. Rev. Lett. 105 142301
[68] Adare A et al 2013 Phys. Rev. C 87 034911
[69] Abelev B et al 2009 Phys. Rev. C 80 044905
[70] Abelev B et al 2013 Phys. Lett. B 719 18
[71] Abelev B et al 2013 Phys. Lett. B 720 52
[72] Aad G et al 2012 Phys. Lett. B 707 330
[73] Chatrchyan S et al 2012 Eur. Phys. J. C 72 1945
[74] Chatrchyan S et al 2012 Phys. Rev. Lett. 109 022301
[75] Abelev B et al 2012 J. High Energy Phys. 1209 112
[76] Abelev B et al 2014 Phys. Rev. C 90 034904
[77] C M S Collaboration 2012 CMS-PAS-HIN-12
[78] Bazavov A et al 2013 Phys. Rev. D 88 094021
[79] Borsanyi S et al 2012 J. High Energy Phys. 1201 138
[80] Ratti C and Shuryak E 2009 Phys. Rev. D 80 034004
[81] Christiansen N, Haas M, Pawlowski J M and Strodthoff N 2014 arXiv:1411.7986 [hep-ph]

Viewed
Full text


Abstract