Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 090601    DOI: 10.1088/0256-307X/32/9/090601
GENERAL |
First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM
LIN Yi-Ge1**, WANG Qiang1,2, LI Ye1,2, MENG Fei1, LIN Bai-Ke1,2, ZANG Er-Jun1, SUN Zhen1, FANG Fang1, LI Tian-Chu1, FANG Zhan-Jun1
1Division of Time and Frequency, National Institute of Metrology (NIM), Beijing 100013
2Department of Precision Instrument, Tsinghua University, Beijing 100084
Download: PDF(546KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10−16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-km-long fiber. A fiber optical frequency comb, phase-locked to the reference frequency of this H-maser, is used for the optical frequency measurement. The absolute frequency of this Sr clock is measured to be 429228004229873.7(1.4) Hz.

Received: 31 July 2015      Published: 02 October 2015
PACS:  06.30.Ft (Time and frequency)  
  42.62.Fi (Laser spectroscopy)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Cite this article:   
LIN Yi-Ge, WANG Qiang, LI Ye et al  2015 Chin. Phys. Lett. 32 090601
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/090601       OR      http://cpl.iphy.ac.cn/Y2015/V32/I09/090601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIN Yi-Ge
WANG Qiang
LI Ye
MENG Fei
LIN Bai-Ke
ZANG Er-Jun
SUN Zhen
FANG Fang
LI Tian-Chu
FANG Zhan-Jun

[1] Chou C W et al 2010 Phys. Rev. Lett. 104 070802
[2] Bloom B J et al 2014 Nature 506 71
[3] Nicholson T L et al 2015 Nat. Commun. 6 6896
[4] Ushijima I et al 2015 Nat. Photon. 9 185
[5] Blatt S et al 2008 Phys. Rev. Lett. 100 140801
[6] Wang S K et al 2009 Chin. Phys. Lett. 26 093202
[7] Lin Y G et al 2013 Chin. Phys. Lett. 30 014206
[8] Li Y et al 2014 Chin. Phys. Lett. 31 024207
[9] Wang Q et al 2014 Chin. Phys. Lett. 31 123201
[10] Blatt S et al 2009 Phys. Rev. A 80 052703
[11] Swallows M D et al 2011 Science 331 1043
[12] Nicholson T L et al 2012 Phys. Rev. Lett. 109 230801
[13] Yudin V I et al 2011 Phys. Rev. Lett. 107 030801
[14] Middelmann T, Falke S, Lisdat C and Sterr U 2012 Phys. Rev. Lett. 109 263004
[15] Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001
[16] Barber Z et al 2008 Phys. Rev. Lett. 100 103002
[17] Campbell G K et al 2009 Science 324 360
[18] Swallows M D et al 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 574
[19] Boyd M M et al 2006 Science 314 1430
[20] Falke S et al 2011 Metrologia 48 399
[21] Westergaard P G et al 2011 arXiv:1102.1797
[22] Baillard X et al 2007 Opt. Lett. 32 1812
[23] Lodewyck J et al 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411
[24] Pollack S E et al 2010 Phys. Rev. D 81 021101
[25] Wang B et al 2012 Sci. Rep. 2 556
[26] Campbell G K et al 2008 Metrologia 45 539
[27] Hong F L et al 2009 Opt. Lett. 34 692
[28] Yamaguchi A et al 2012 Appl. Phys. Express 5 022701
[29] Le Targat R et al 2013 Nat. Commun. 4 2109
[30] Falke S et al 2014 New J. Phys. 16 073023
[31] Akamatsu D et al 2014 Appl. Phys. Express 7 012401

Viewed
Full text


Abstract