Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 084202    DOI: 10.1088/0256-307X/32/8/084202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems
LIU Lan-Lan1, WU Chong-Qing1**, SHANG Chao2, WANG Jian1, GAO Kai-Qiang1
1Institute of Optical Information, and Key Lab of Education Ministry on Luminescence and Optical Information Technology, School of Science, Beijing Jiaotong University, Beijing 100044
2State Key Laboratory of Information Photonics and Optical Communication, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
LIU Lan-Lan, WU Chong-Qing, SHANG Chao et al  2015 Chin. Phys. Lett. 32 084202
Download: PDF(1950KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quaternion approach to solve the coupled nonlinear Schr?dinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quaternion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Gbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4 mW, the crosstalk effect can be neglected; when the power is larger than 20 mW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincaré sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.
Received: 04 March 2014      Published: 02 September 2015
PACS:  42.81.-i (Fiber optics)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/084202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/084202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Lan-Lan
WU Chong-Qing
SHANG Chao
WANG Jian
GAO Kai-Qiang
[1] Kawanishi S 2011 Los Angeles OFC' 2011 WH5
[2] Xia C, Schairer W, Striegler A, Rapp L, Kuschnerov M, Pina J F and Borne V D D 2011 J. Lightwave Technol. 29 3223
[3] Gwang-Hyun G, Klak L and Kahn J M 2011 J. Lightwave Technol. 29 222
[4] Foursa D, Cai Yand et al 2011 Optical Fiber Communication Conference (Los Angeles OFC'2011 OMI4)
[5] Agrawal G 2002 Nonlinear Fiber Optics and Applications on nonlinear Fiber Optics 3rd edn (Beijing: Beijing Publishing House of Electronics Industry)
[6] Winful H G 1986 Opt. Lett. 11 33
[7] Wu C Q, Tao Y, Li L, Wang Y J and Xin X J 1999 Semiconductor Optoelectronics 20 308 (in Chinese)
[8] Marcuse D, Menyuk C R and Wai P K A 1997 J. Lightwave Technol. 15 1735
[9] Wai P K A, Kath W L, Menyuk C R et al 1997 J. Opt. Soc. Am. B 14 2967
[10] Menyuk C R and Marks B S 2006 J. Lightwave Technol. 24 2806
[11] Midrio M 2000 J. Opt. Soc. Am. B 17 169
[12] Crosignani B, Daino B and Porto P D 1986 J. Opt. Soc. Am. B 3 1120
[13] Li P, Shi L and Mao Q H 2013 Acta Phys. Sin. 62 154205 (in Chinese)
[14] Wang E L, Jiang H M, Xie K and Zhang X X 2014 Acta Phys. Sin. 63 134210 (in Chinese)
[15] Hamilton W R 1848 Proc. Roy. Irish Acad. p 1
[16] Karlsson M and Petersson M 2004 J. Lightwave Technol. 22 1137
[17] Ding G T 2013 Acta Opt. Sin. 33 0726001 (in Chinese)
[18] Liu L L, Wu C Q and Li Z Y 2014 Acta Opt. Sin. 34 0306002 (in Chinese)
[19] Liu L L, Wu C Q, Shang C, Li Z Y and Wang J 2015 IEEE Photon. J. (accepted)
Related articles from Frontiers Journals
[1] Peng-Fei Zhang, Li-Jun Song, Chang-Lin Zou, Xin Wang, Chen-Xi Wang, Gang Li, and Tian-Cai Zhang. Tunable Optical Bandpass Filter via a Microtip-Touched Tapered Optical Fiber[J]. Chin. Phys. Lett., 2020, 37(10): 084202
[2] Zhou-Xiang Wang, Yu-Chen Xie, Han Zhou, Shuang-Yin Huang, Min Wang, Rui Liu, Wen-Rong Qi, Qian-Qian Tian, Ling-Jun Kong, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Identifying the Symmetry of an Object Based on Orbital Angular Momentum through a Few-Mode Fiber[J]. Chin. Phys. Lett., 2019, 36(12): 084202
[3] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 084202
[4] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 084202
[5] Zian Cheak Tiu, Arman Zarei, Sin Jin Tan, Harith Ahmad, Sulaiman Wadi Harun. Q-Switching Pulse Generation with Thulium-Doped Fiber Saturable Absorber[J]. Chin. Phys. Lett., 2014, 31(12): 084202
[6] LI Qi, YAN Feng-Ping, PENG Wan-Jing, FENG Su-Chun, FENG Ting, TAN Si-Yu, LIU Peng. Stable Single Polarization, Single Frequency, and Linear Cavity Er-Doped Fiber Laser Using a Saturable Absorber[J]. Chin. Phys. Lett., 2013, 30(2): 084202
[7] ZHENG Wan-Jun, CHENG Jian-Qun, RUAN Shuang-Chen**, ZHANG Min, LIU Wen-Li, YANG Xi, ZHANG Ying-Ying. A Switchable Multi-wavelength Erbium-Doped Photonic Crystal Fiber Laser with Linear Cavity Configuration[J]. Chin. Phys. Lett., 2012, 29(12): 084202
[8] Saman Q. Mawlud, Nahlah Q. Muhamad. Theoretical and Experimental Study of a Numerical Aperture for Multimode PCS Fiber Optics Using an Imaging Technique[J]. Chin. Phys. Lett., 2012, 29(11): 084202
[9] FENG Ting, YAN Feng-Ping, LI Qi, PENG Wan-Jing, FENG Su-Chun, WEN Xiao-Dong, LIU Peng, TAN Si-Yu. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure[J]. Chin. Phys. Lett., 2012, 29(10): 084202
[10] WANG Xiu-Lin, HUANG Wen-Cai, and CAI Zhi-Ping. Characteristics Improvement of L-Band Superfluorescent Fiber Source Using Unpumped Erbium-Doped Fiber[J]. Chin. Phys. Lett., 2012, 29(8): 084202
[11] CHEN Wei,MENG Zhou**,ZHOU Hui-Juan,LUO Hong. Effects of Input Spectra on the Threshold of Modulation Instability in a Single-Mode Fiber[J]. Chin. Phys. Lett., 2012, 29(4): 084202
[12] JIANG Ming, TANG Min-Jin, WU Hao, LI Yan-Jie, XIE Hui-Min. FIB Moiré Gratings and Their Application in the Measurement of Optical Fibers' Mechanical Properties[J]. Chin. Phys. Lett., 2012, 29(3): 084202
[13] LI Shu-Guang**, ZHOU Hong-Song, YIN Guo-Bing . Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2011, 28(11): 084202
[14] YAN Hai-Feng**, YU Zhong-Yuan, LIU Yu-Min, TIAN Hong-Da, HAN Li-Hong . Novel Propagation Properties of Total Internal Reflection Photonic Crystal Fibres with Rhombic Air Holes[J]. Chin. Phys. Lett., 2011, 28(11): 084202
[15] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 084202
Viewed
Full text


Abstract