Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 083701    DOI: 10.1088/0256-307X/32/8/083701
ATOMIC AND MOLECULAR PHYSICS |
Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap
CHEN Ting1,2,3, DU Li-Jun1,2,3, SONG Hong-Fang1,2,3, LIU Pei-Liang1,2, HUANG Yao1,2, TONG Xin1,2, GUAN Hua1,2**, GAO Ke-Lin1,2
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CHEN Ting, DU Li-Jun, SONG Hong-Fang et al  2015 Chin. Phys. Lett. 32 083701
Download: PDF(700KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The 7Li+ ion is one of the most important candidates for verifying QED theory and obtaining the precise value of the fine-structure constant α. However, direct laser cooling of trapped Li+ ions will lead to strong background fluorescence which will influence the spectrum detection. The sympathetic cooling technique is a good choice to solve the problem. In this work, we report sympathetic cooling of 7Li+ ions to few mK using 40Ca+ ions in a linear Paul trap. A mixed ion crystal of 40Ca+ ions and 7Li+ ions are obtained. We also analyze the motion frequency spectra of pure 40Ca+ ions and mixed ions.
Received: 27 February 2015      Published: 02 September 2015
PACS:  37.10.Ty (Ion trapping)  
  37.10.Rs (Ion cooling)  
  64.70.kp (Ionic crystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/083701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/083701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Ting
DU Li-Jun
SONG Hong-Fang
LIU Pei-Liang
HUANG Yao
TONG Xin
GUAN Hua
GAO Ke-Lin
[1] Adler A, Kahan W, Novick R and Lucatorto T 1973 Phys. Rev. A 7 967
[2] Clarke J J and van Wijngaarden W A 2003 Phys. Rev. A 67 012506
[3] Rong H, Grafstr?m S, Kowalski J, Neumann R and zu Putlitz G 2002 Opt. Commun. 201 345
[4] Rong H, Grafstr?m S, Kowalski J, Neumann R and zu Putlitz G 1998 Eur. Phys. J. D 3 217
[5] Fan B, Lurio A and Grischkowsky D 1978 Phys. Rev. Lett. 41 1460
[6] Riis E, Berry H G, Poulsen O, Lee S A and Tang S Y 1986 Phys. Rev. A 33 3023
[7] Holt R A, Rosner S D, Gaily T D and Adam A G 1980 Phys. Rev. A 22 1563
[8] Bayer R, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K and zu Putilitz G 1979 Z. Phys. A 292 329
[9] Bacis R and Berry H G 1974 Phys. Rev. A 10 466
[10] Semczuk M 2009 Master Thesis (Warsaw: University of Warsaw and Max Planck Institute of Quantum Optics)
[11] Roth B, Fr?hlich U and Schiller S 2005 Phys. Rev. Lett. 94 053001
[12] Barletta P, Tennyson J and Barker P F 2009 New J. Phys. 11 055029
[13] Soldán P and Huston J M 2004 Phys. Rev. Lett. 92 163202
[14] Baba T and Waki I 2001 J. Appl. Phys. 89 4592
[15] Schneider C, Schowalter S J, Chen K, Sullivan S T and Hudson E R 2014 Phys. Rev. Appl. 2 034013
[16] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[17] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wine-land D J and Bergquist J C 2008 Science 319 1808
[18] Wübbena J B, Amairi S, Mandel O and Schmidt P O 2012 Phys. Rev. A 85 043412
[19] Baba T and Waki I 1996 Jpn. J. Appl. Phys. 35 L1134
[20] van Eijkelenborg M A, Storkey M E M, Segal D M and Thompson R C 1999 Phys. Rev. A 60 3903
[21] Baba T and Waki I 2002 Appl. Phys. B 74 375
[22] Schiller S and L?mmerzahl C 2003 Phys. Rev. A 68 053406
[23] Roth B and Schiller S 2008 arXiv:0812.1154[quant-ph]
[24] March R E 1997 J. Mass Spectrom. 32 351
[25] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[26] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2014 Chin. Phys. B 23 123702
[27] Rohde H, Gulde S T, Roos C F, Barton P A, Leibfried D, Eschner J, Schmidt-Kaler F and Blatt R 2001 J. Opt. B: Quantum Semiclass. Opt. 3 S34
[28] Roth B, Blythe P and Schiller S 2007 Phys. Rev. A 75 023402
[29] Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A and Ozeri R 2010 Phys. Rev. A 82 061402
[30] Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A 76 012719
[31] Yu J, Desaintfuscien M and Plumelle F 1989 Appl. Phys. B 48 51
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 083701
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 083701
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 083701
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 083701
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 083701
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 083701
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 083701
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 083701
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 083701
[10] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 083701
[11] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 083701
[12] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 083701
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 083701
[14] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 083701
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 083701
Viewed
Full text


Abstract