Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 080303    DOI: 10.1088/0256-307X/32/8/080303
GENERAL |
Analysis of Faraday Mirror in Auto-Compensating Quantum Key Distribution
WEI Ke-Jin, MA Hai-Qiang**, LI Rui-Xue, ZHU Wu, LIU Hong-Wei, ZHANG Yong, JIAO Rong-Zhen
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
WEI Ke-Jin, MA Hai-Qiang, LI Rui-Xue et al  2015 Chin. Phys. Lett. 32 080303
Download: PDF(817KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The 'plug & play' quantum key distribution system is the most stable and the earliest commercial system in the quantum communication field. Jones matrix and Jones calculus are widely used in the analysis of this system and the improved version, which is called the auto-compensating quantum key distribution system. Unfortunately, existing analysis has two drawbacks: only the auto-compensating process is analyzed and existing systems do not fully consider laser phase affected by a Faraday mirror (FM). In this work, we present a detailed analysis of the output of light pulse transmitting in a plug & play quantum key distribution system that contains only an FM, by Jones calculus. A similar analysis is made to a home-made auto-compensating system which contains two FMs to compensate for environmental effects. More importantly, we show that theoretical and experimental results are different in the plug & play interferometric setup due to the fact that a conventional Jones matrix of FM neglected an additional phase π on alternative polarization direction. To resolve the above problem, we give a new Jones matrix of an FM according to the coordinate rotation. This new Jones matrix not only resolves the above contradiction in the plug & play interferometric setup, but also is suitable for the previous analyses about auto-compensating quantum key distribution.
Received: 24 April 2015      Published: 02 September 2015
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/080303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/080303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Ke-Jin
MA Hai-Qiang
LI Rui-Xue
ZHU Wu
LIU Hong-Wei
ZHANG Yong
JIAO Rong-Zhen
[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Buttler T W, Hughes J R, Kwiat G P, Lamoreaux K S, Luther G G, Morgan L G, Nordholt E J, Peterson G C and Simmons M C 1998 Phys. Rev. Lett. 81 3283
[3] Stucki D, Gisin N, Guinnard O, Ribordy G and Zbinden H 2002 New J. Phys. 4 41
[4] Mo X F, Zhu B, Han Z F, Gui Y Z and Gun G C 2005 Opt. Lett. 30 2632
[5] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547
[6] Zhu Z C and Zhang Y Q 2010 Chin. Phys. Lett. 27 060303
[7] Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New J. Phys. 11 075003
[8] Ma H Q, Wei K J and Yang J H 2013 J. Opt. Soc. Am. B 30 2560
[9] Marand C and Townsend P D 1995 Opt. Lett. 20 1695
[10] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[11] Muller A, Herzog T, Huttner B, Tittel W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793
[12] Martinelli M 1989 Opt. Commun. 72 341
[13] Bogdanski J, Rafiei N and Bourennane M 2008 Phys. Rev. A 78 062307
[14] Sun S H, Ma H Q, Han J J, Liang L M and Li C Z 2010 Opt. Lett. 35 1203
[15] Liu Y, Ju L, Liang X L, Tang S B, Tu G L S, Zhou L, Peng C Z, Chen K, Chen T Y, Chen Z B and Pan J W 2012 Phys. Rev. Lett. 109 030501
[16] Ma H Q, Wei K J and Yang J H 2013 Opt. Lett. 38 4494
[17] Xu F H, Wei K J, Sajeed S, Kaiser S, Sun S H, Tang Z Y, Qian L, Makarov V and Lo H K 2015 arXiv:1408.3667 [quant-ph]
[18] Xu F H, Arrazola J M, Wei K J, Wang W Y, Palacios-Avila P, Feng C, Sajeed S and Lo H K 2015 arXiv:1503.05499 [quant-ph]
[19] Bethune D S and Risk W P 2002 New J. Phys. 4 42
[20] Cho S B and Noh T G 2009 Opt. Express 17 19027
[21] Ma H Q, Zhao J L and Wu L A 2007 Opt. Lett. 32 698
[22] Sun S H, Jiang M S and Liang L M 2011 Phys. Rev. A 83 062331
[23] Pistoni N C 1995 Appl. Opt. 34 7870
[24] Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 080303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 080303
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 080303
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 080303
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 080303
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 080303
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 080303
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 080303
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 080303
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 080303
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 080303
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 080303
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 080303
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 080303
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 080303
Viewed
Full text


Abstract