Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 080302    DOI: 10.1088/0256-307X/32/8/080302
GENERAL |
Phase-Coding Self-Testing Quantum Random Number Generator
SONG Xiao-Tian1,2, LI Hong-Wei1,2, YIN Zhen-Qiang1,2**, LIANG Wen-Ye1,2, ZHANG Chun-Mei1,2, HAN Yun-Guang1,2, CHEN Wei1,2**, HAN Zheng-Fu1,2
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang et al  2015 Chin. Phys. Lett. 32 080302
Download: PDF(566KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
Received: 09 April 2015      Published: 02 September 2015
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/080302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/080302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Xiao-Tian
LI Hong-Wei
YIN Zhen-Qiang
LIANG Wen-Ye
ZHANG Chun-Mei
HAN Yun-Guang
CHEN Wei
HAN Zheng-Fu
[1] Menezes A J, Oorschot P C and Vanstone S A 1997 Handbook of Applied Cryptography (Boca Raton: CRC press)
[2] http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
[3] Wahl M, Leifgen M, Berlin M, Rohlicke T, Rahn H J and Benson O 2011 Appl. Phys. Lett. 98 171105
[4] Stefanov A, Gisin N, Guinnard O, Guinnard L and Zbinden H 2000 J. Mod. Opt. 47 595
[5] Dynes J F, Yuan Z L, Sharpe A L and Shields A J 2008 Appl. Phys. Lett. 93 031109
[6] Qi B, Chi Y, Lo H K and Li Q 2010 Opt. Lett. 35 312
[7] Guo H, Tang W, Liu Y and Wei W 2010 Phys. Rev. E 81 051137
[8] Nie Y Q, Zhang H F, Zhang Z, Wang J and Ma X F 2014 Appl. Phys. Lett. 104 051110
[9] Xu F, Qi B, Ma X, Xu H, Zheng H and Lo H K 2012 Opt. Express 20 12366
[10] Pironio S, Acin A, Massar S et al 2010 Nature 464 1021
[11] Li H W, Yin Z Q, Wu Y C, Zou X B, Wang S, Chen W, Guo G C and Han Z F 2011 Phys. Rev. A 84 034301
[12] Li H W, Pawlowski M, Yin Z Q, Guo G C and Han Z F 2012 Phys. Rev. A 85 052308
[13] Bowles J, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 140407
[14] Li H W, Yin Z Q, Chen W, Wang S, Guo, G C and Han Z F 2014 Phys. Rev. A 89 032302
[15] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2014 Phys. Rev. A 90 052319
[16] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2013 Phys. Rev. A 88 062322
[17] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p 179
[18] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 Opt. Lett. 30 2632
[19] Lunghi T, Brask J B, Lim C, Lavigne Q, Bowles J, Martin A, Zbinden H and Brunner N 2015 Phys. Rev. Lett. 114 150501
[20] http://www.idquantique.com/photon-counting/photon-counting-modules/id210/
[21] http://www.qasky.com/Product.aspx?id=91
Related articles from Frontiers Journals
[1] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 080302
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 080302
[3] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 080302
[4] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 080302
[5] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 080302
[6] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 080302
[7] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 080302
[8] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 080302
[9] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 080302
[10] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 080302
[11] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 080302
[12] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 080302
[13] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 080302
[14] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 080302
[15] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 080302
Viewed
Full text


Abstract