Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077801    DOI: 10.1088/0256-307X/32/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Third-Order Nonlinear Optical Properties in Cobalt-Doped ZnO Films
YAN Teng-Fei1, LI Ying1, KANG Jun-Jie1, ZHOU Peng-Yu1, SUN Bao-Quan1, ZHANG Kun2, YAN Shi-Shen2, ZHANG Xin-Hui1**
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
Cite this article:   
YAN Teng-Fei, LI Ying, KANG Jun-Jie et al  2015 Chin. Phys. Lett. 32 077801
Download: PDF(790KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We quantitatively investigate the third-order optical nonlinear response of Co-doped ZnO thin films prepared by magnetron sputtering using the Z-scan method. The two-photon absorption and optical Kerr effect are revealed to contribute to the third-order nonlinear response of the Co-doped ZnO films. The nonlinear absorption coefficient β is determined to be approximately 8.8×10?5 cm/W and the third-order nonlinear susceptibility χ(3) is 2.93×10?6 esu. The defect-associated energy levels within the band gap are suggested to be responsible for the enhanced nonlinear response observed in Co-doped ZnO films.
Received: 20 April 2015      Published: 30 July 2015
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.20.Mg (Photorefractive effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Teng-Fei
LI Ying
KANG Jun-Jie
ZHOU Peng-Yu
SUN Bao-Quan
ZHANG Kun
YAN Shi-Shen
ZHANG Xin-Hui
[1] Hanamura E 1988 Phys. Rev. B 37 1273
[2] Irimpan L, Deepthy A, Krishnan B, Nampoori V P N and Radhakrishnan P 2008 Appl. Phys. B 90 547
[3] Haripadmam P C, Kavitha M K, John H, Krishnan B and Gopinath P2012 Appl. Phys. Lett. 101 071103
[4] Kumari V, Kumar V, Mohan D, Purnima, Malik B P and Mehra R M 2012 J. Mater. Sci. Technol. 28 506
[5] Irimpan L, Nampoori V P N, Radhakrishnan P, Krishnan B and Deepthy A 2008 J. Appl. Phys. 103 033105
[6] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[7] Kazunori S and Hiroshi K Y 2000 Jpn. J. Appl. Phys. 39 L555
[8] Kazunori S and Hiroshi K Y 2001 Jpn. J. Appl. Phys. 40 L334
[9] Rebecca J, Priya G and Nicola A S 2005 J. Phys.: Condens. Matter 17 R657
[10] Gacic M, Jakob G, Herbort C, Adrian H, Tietze T, Brück S and Goering E 2007 Phys. Rev. B 75 205206
[11] Bai H L, He S M, Xu T S, Liu G L, Yan S S, Zhu D P, Dai Z K, Yang F F, Dai Y Y, Chen Y X and Mei L M 2012 Chin. Phys. B 21 107201
[12] Che P, Liu S X, Sun C Y, Zhou H L, Li W J and Tang J K 2013 J. Magn. Magn. Mater. 327 28
[13] Hu S J, Yan S S, Zhao M W, Lin X L, Yao X X, Han C, Tian Y F, Chen Y X, Liu G L and Mei L M 2011 Scr. Mater. 64 864
[14] Zhang Y P, Yan S S, Liu Y H, Ren M J, Fang Y, Chen Y X, Liu G L, Mei L M, Liu J P, Qiu J H, Wang S Y and Chen L Y 2006 Appl. Phys. Lett. 89 042501
[15] Yan S S, Ren C, Wang X, Xin Y, Zhou Z X, Mei L M, Ren M J, Chen Y X, Liu Y H and Garmestani H 2004 Appl. Phys. Lett. 84 2376
[16] Lu Z L, Hsu H S, Tzeng Y H, Zhang F M, Du Y W and Huang J C A 2009 Appl. Phys. Lett. 95 102501
[17] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760
[18] Sheik-bahae M, Said A A and Van Stryland E W 1989 Opt. Lett. 14 955
[19] Yin M, Li H P, Tang S H and Ji W 2000 Appl. Phys. B 70 587
[20] Agrawal A, Ahmad Dar T, Solanki R, Phase D M and Sen P 2015 Phys. Status Solidi B (in press)
[21] Karthikeyan B, Suchand Sandeep C S, Pandiyarajan T, Venkatesan P and Philip R 2011 Appl. Phys. A 102 115
[22] Nagaraja K K, Pramodini S, Santhosh Kumar A, Nagaraja H S, Poornesh P and Kekuda D 2013 Opt. Mater. 35 431
[23] Jeeju P P, Jayalekshmi S, Chandrasekharan K and Sudheesh P 2012 Opt. Commun. 285 5433
[24] Ramakrishna P B A, Palmer W J, Reji P, Siva S S S, He J, Malcolm S, Hwu S J, Sumanta T and Apparao M R 2011 Nanotechnology 22 095703
[25] Ji G, Zhang Y, Yan S, Mei L and Zhang Z 2008 Acta Metall. Sin. 44 1399 (in Chinese)
[26] Hong R, Qi H, Huang J, He H, Fan Z and Shao J 2005 Thin Solid Films 473 58
[27] Amrani B and Hamzaoui S 2004 Catal. Today 89 331
[28] Li Q, Shen T T, Dai Z K, Cao Y L, Yan S S, Kang S S, Dai Y Y, Chen Y X, Liu G L and Mei L M 2012 Appl. Phys. Lett. 101 172405
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 077801
[2] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 077801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 077801
[4] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 077801
[5] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 077801
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 077801
[7] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 077801
[8] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 077801
[9] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 077801
[10] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 077801
[11] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 077801
[12] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 077801
[13] Xiao-Wei Han, Lei Hou, Lei Yang, Zhi-Quan Wang, Meng-Meng Zhao, Wei Shi. Optical-Electrical Characteristics and Carrier Dynamics of Semi-Insulation GaAs by Terahertz Spectroscopic Technique[J]. Chin. Phys. Lett., 2016, 33(12): 077801
[14] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 077801
[15] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 077801
Viewed
Full text


Abstract