Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 077202    DOI: 10.1088/0256-307X/32/7/077202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer
ZHANG Ruo-Chuan1,2, WANG Meng-Ying1,2, YANG Li-Ying1,2**, QIN Wen-Jing1,2**, YIN Shou-Gen1,2**
1Key Laboratory of Display Materials & Photoelectric Devices (Ministry of Education) and School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384
2Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin 300384
Cite this article:   
ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying et al  2015 Chin. Phys. Lett. 32 077202
Download: PDF(2283KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We compare the electrical, optical, and surface properties of the PEDOT:PSS/Cu nanowires (Cu NWs)/PEDOT: PSS (PCP) multilayer for organic solar cells. It is demonstrated that the electrical and optical properties of the PEDOT could be improved by the insertion of a Cu NW layer due to its very low resistivity and surface morphology. The organic bulk heterojunction solar cell fabricated on the multilayer exhibits a higher power conversion efficiency than devices based on the PEDOT:PSS or PEDOT:PSS/Cu NWs layer. Moreover, the PCP multilayer can improve cell-performances such as a fill factor and the internal resistance in the device due to horizontally well-aligned Cu NWs. The results suggest that the PCP multilayer is a promising low-cost and low-temperature processing buffer layer candidate for low-cost organic photovoltaics.
Received: 14 January 2015      Published: 30 July 2015
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  88.40.jr (Organic photovoltaics)  
  72.40.+w (Photoconduction and photovoltaic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/077202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/077202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ruo-Chuan
WANG Meng-Ying
YANG Li-Ying
QIN Wen-Jing
YIN Shou-Gen
[1] Thompson B C and Fréchet J M J 2008 Angew. Chem. Int. Ed. 47 58
[2] Li Y F 2012 Acc. Chem. Res. 45 723
[3] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[4] Kim K M, Lee K W, Moujoud A, Oh S H and Kim H J 2010 Electrochem. Solid-State Lett. 13 H447
[5] Park S H, Roy A, Beaupré S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K and Heeger A J 2009 Nat. Photon. 3 297
[6] Na S I, Oh S H, Kim S S and Kim D Y 2009 Org. Electron. 10 496
[7] Jung J, Oh S H, Yoon D H and Kim H J 2012 J. Nanosci. Nanotechnol. 12 1165
[8] Yang F and Shtein M and Forrest S R 2004 Nat. Mater. 4 37
[9] Kirchmeyer S and Reuter K 2005 J. Mater. Chem. 15 2077
[10] Groenendaal L, Jonas F, Freitag D, Pielartzik H and Reynolds J R 2000 Adv. Mater. 12 481
[11] Winther-Jensen B and Krebs F C 2006 Sol. Energy Mater. Sol. Cells 90 123
[12] Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, van Haesendonck C, Van der Auweraer M, Salaneck W R and Berggren M 2006 Chem. Mater. 18 4354
[13] Ouyang J, Xu Q, Chu C W, Yang Y, Li G and Shinar J 2004 Polymer 45 8443
[14] Oh S H, Yang J S, Heo S J and Kim H J 2014 J. Nanosci. Nanotechnol. 14 5531
[15] Kymakis E, Klapsis G, Koudoumas E, Stratakis E, Kornilios N, Vidakis N and Franghiadakis Y 2006 Eur. Phys. J. Appl. Phys. 36 257
[16] Yin B, Liu Q, Yang L, Wu X, Liu Z, Hua Y, Yin S and Chen Y 2010 J. Nanosci. Nanotechnol. 3 10
[17] Gaynor W, Burkhard G F, Mc Gehee M D and Peumans P 2011 Adv. Mater. 23 2905
[18] Ye S R, Rathmell A R, Chen Z F, Stewart L E and Wiley B 2014 Adv. Mater. 26 6670
[19] Mayousse C, Celle C, Carella A and Simonato J P 2014 Nano Res. 7 315
[20] Chang Y, Lye M L and Zeng H C 2005 Langmuir 21 3746
[21] Rathmell A, Bergin S, Hua Y, Li Z and Wiley B 2010 Adv. Mater. 22 3558
[22] Rathmell A and Wiley B 2011 Adv. Mater. 23 4798
[23] Sachse C, Wei? N, Gaponik N, Lars M, Eychmüller A and Leo K 2014 Adv. Energy. Mater. 4 1300737
[24] Li Y F, Yang L Y, Qin W J, Yin S G and Zhang F L 2013 Chin. Phys. Lett. 30 017201
[25] Xu X J, Yang L Y, Tian H, Qin W J, Yin S G and Zhang F L 2013 Chin. Phys. Lett. 30 077201
[26] Liu Z, Yang Y, Liang J B, Hu Z K, Li S, Peng S and Qian Y T 2003 J. Phys. Chem. B 107 12658
[27] Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D and Dong P 2013 Sci. Rep. 3 2323
[28] Leem D S, Edwards A, Faist M, Nelson J, Bradley D D C and de Mello J C 2011 Adv. Mater. 23 4371
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 077202
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 077202
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 077202
[4] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 077202
[5] Min-Nan Guo, Shao-Wei Liu, Na Guo, Li-Ying Yang, Wen-Jing Qin, Shou-Gen Yin. Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct[J]. Chin. Phys. Lett., 2016, 33(07): 077202
[6] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 077202
[7] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 077202
[8] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 077202
[9] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 077202
[10] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 077202
[11] MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode[J]. Chin. Phys. Lett., 2015, 32(09): 077202
[12] ZHANG Hong-Mei, WANG Dan-Bei, ZENG Wen-Jin, YAN Min-Nan. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures[J]. Chin. Phys. Lett., 2015, 32(09): 077202
[13] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 077202
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 077202
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 077202
Viewed
Full text


Abstract