Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 074201    DOI: 10.1088/0256-307X/32/7/074201
Polarimetric Laser Range-Gated Underwater Imaging
GUAN Jin-Ge1,2, ZHU Jing-Ping1,2**, TIAN Heng1,2
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049
2Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
GUAN Jin-Ge, ZHU Jing-Ping, TIAN Heng 2015 Chin. Phys. Lett. 32 074201
Download: PDF(677KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For conventional laser range-gated underwater imaging (RGI) systems, the target image is obtained based on the reflective character of the target. One of the main performance limiting factors of conventional RGI is that, when the underwater target has the same reflectivity as the background, it is difficult to distinguish the target from the background. An improvement is to use the polarization components of the reflected light. On the basis of conventional RGI, we propose a polarimetric RGI system that employs a polarization generator and a polarization analyzer to detect and recognize underwater objects. Experimental results demonstrate that, by combining polarization with intensity information, we are better able to enhance identification of the underwater target from other objects of the same reflectivity.
Received: 24 March 2015      Published: 30 July 2015
PACS:  42.25.Dd (Wave propagation in random media)  
  42.25.Ja (Polarization)  
  42.30.Sy (Pattern recognition)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
ZHU Jing-Ping
[1] Treibitz T and Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385
[2] Zhao X W, Jin T, Chi H and Qu S 2015 Acta Phys. Sin. 64 104201 (in Chinese)
[3] Bina M, Magatti D, Molteni M, Gatti A, Lugiato A and Ferri F 2013 Phys. Rev. Lett. 110 083901
[4] Chen Y Z, Li W, Xia M and Yang K C 2011 Opt. Eng. 50 113203
[5] Tong J Y, Tan W J, Si J H, Cheng F, Yi W H and Hou X 2012 Chin. Phys. Lett. 29 024207
[6] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K and Puliafito C A 1991 Science 254 1178
[7] Chenault D B and Pezzaniti J L 2000 Proc. SPIE 4143 124
[8] Fade J, Panigrahi S and Alouini M 2014 Opt. Express 22 4920
[9] Repasi E, Lutzmann P, Steinvall O, Elmqvist M, G?hler B and Anstett G 2009 Appl. Opt. 48 5956
[10] Wu L, Zhao Y, Zhang Y, Jin C F and Wu J 2011 Opt. Lett. 36 1365
[11] Wang X W, Li Y F and Zhou Y 2013 Appl. Opt. 52 7399
[12] Sun X B, Qiao Y L and Hong J 2010 J. Atmos. Environ. Opt. 5 175 (in Chinese)
[13] Zhao Y Q, Gong P and Pan Q 2008 IEEE Trans. Geosci. Remote Sens. 46 3337
[14] Shao H R, He Y H, Li W and Ma H 2006 Appl. Opt. 45 4491
[15] Swami M K, Manhas S, Patel H and Gupta P K 2010 Appl. Opt. 49 3458
Related articles from Frontiers Journals
[1] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 074201
[2] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 074201
[3] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 074201
[4] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 074201
[5] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 074201
[6] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 074201
[7] Ye Li, Yi-Xin Zhang. Effects of Strong Turbulence on the Spiral Plane Mode of Whittaker–Gaussian Beam through Terrene-Atmosphere[J]. Chin. Phys. Lett., 2016, 33(05): 074201
[8] HUANG Hui-Ling, CHEN Zi-Yang, SUN Cun-Zhi, LIU Ji-Lin, PU Ji-Xiong. Light Focusing through Scattering Media by Particle Swarm Optimization[J]. Chin. Phys. Lett., 2015, 32(10): 074201
[9] YANG Peng-Ju, GUO Li-Xin, JIA Chun-Gang. Doppler Spectrum Analysis of Time-Evolving Sea Surface Covered by Oil Spills[J]. Chin. Phys. Lett., 2015, 32(4): 074201
[10] XU Run-Wen, GUO Li-Xin, FAN Tian-Qi. Composite Scattering from an Arbitrary Dielectric Target above the Dielectric Rough Surface with FEM/PML[J]. Chin. Phys. Lett., 2013, 30(12): 074201
[11] CUI Shuai, ZHANG Xiao-Juan, FANG Guang-You. A Modified MRTD Forward Model of Electromagnetic Scattering with an FDTD/PML Connection Absorbing Boundary Condition[J]. Chin. Phys. Lett., 2013, 30(3): 074201
[12] LU Ming-Zhu, WU Yu-Peng, SHI Yu, GUAN Yu-Bo, GUO Xiao-Li, WAN Ming-Xi. Monte Carlo Simulation of Scattered Light with Shear Waves Generated by Acoustic Radiation Force for Acousto-Optic Imaging[J]. Chin. Phys. Lett., 2012, 29(12): 074201
[13] YANG Chao, JIN Wei, GUO Li-Xin. Electromagnetic Wave Propagation over Oil-Covered Sea Surface[J]. Chin. Phys. Lett., 2012, 29(7): 074201
[14] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 074201
[15] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 074201
Full text